Towards CKMR software

Hans Skaug
Inst. Marine Research \& University of Bergen

CAPAM 2019, Wellington

Hypothesis:

In the future you will know the pedigree of your fish catch

Acknowledgement

- CKMR method developement in fisheries has been driven by CSIRO in Hobart, and particular by Mark Bravington

Outline

- Close-kin Mark-Recapture (CKMR)
- What is it?
- How does it relate to standard Mark-Recapture
- Towards CKMR software
- What are the "good" software abstractions?

Mark-Recapture (MR)

- Estimate abundance, mortality, fecundity in animal populations
- Requires at least two sampling occasions

Sample $1\left(n_{1}=6\right)$:

Sample $2\left(n_{2}=7\right)$:

Lincoln-Petersen estimator: $\widehat{N}=\frac{n_{1} n_{2}}{H}=\frac{6 \cdot 7}{2}=21$
ए A
$\begin{array}{r} \\ \quad C \\ \hline\end{array}$

Close-Kin Mark-Recapture (CKMR)

- Bravington et al, (2016 Stat. Science)
- Toy example with juveniles and adults
- Only single sample needed

Juveniles ($n_{J}=6$) (immature animal)

Adults $\left(n_{A}=7\right)$

H = 3 parentoffspring pairs

Genetically determined parent-offspring pair

Different types of recaptures (kinship)

Parent offspring Half siblings
Full siblings

Recapture probabilities: the importance of knowing age

Age

What is the probability that Mary is Simons mother?

We will now move towards likelihood construction for CKMR data 3

S1 S2 S3 S4 S5 S6

ID \#
1
2
3
4
5

Close-kin mark-recapture (CKMR)

- You
- Parent
- Offspring
- Half sibling
$\begin{array}{lllllll}\text { S1 } & \text { S2 } & \text { S3 } & \text { S4 } & \text { S5 } & \text { S6 } & \text { Sampling occation }\end{array}$
CKMR in fisheries
- You
- Parent
- Offspring
- Half sibling

Time

- You
- Parent

Expected number of parents alive

Tag

Recapture

$\underset{\sim}{\sim} \underset{\sim}{0} 0$

Time

Likelihood contribution
 (observed versus expected numbers)

- You
- Parent

Sample sizes:

Time

Software abstraction

Pseudo code

```
ckmr_pop P (T=10,A=15,\ldots.) {...}
ckmr tag Til(P,t=1,a=1)
double E = T1.E(t=4,a=4)
Likelihood(F/,...) contribu.
```

opulation numbers:
$\left[\begin{array}{ccccc} & & \vdots & & \\ & & \vdots & & \\ \cdots & \cdots & 84321 & \cdots & \cdots \\ & & \vdots & & \\ & & \vdots & & \end{array}\right]$

Time

Discussion

- Expected number of siblings (E) may be hard to calculate
- Requires detailed knowledge of life history of species in question
- Is it possible with general software?
- Fisheries \& non-fisheries

