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The role of random effects in next-generation

stock assessment models

Anders Nielsen (an@aqua.dtu.dk)
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Assessment models

• This is a simplified illustration

• Simplest real versions have hundreds of non-linear model parameters

• Fast runtimes are often important

• The results are needed to make expensive decisions

• This problem has inspired efficient non-standard modelling tools
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• The obvious tool for time series data

• Quantification of observation errors

• Quantification of process errors

• Process formulation of time-varying

• Reasonable (low) number of parameters

• Prediction as part of model formulation
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Random effects

• Unobserved quantities with a distribution

• Often used when something unobserved gives extra variation or correlated observa-

tions

• May sound strange, but often it is easier to formulate joint distribution of unobserved

and observed

• To estimate the model parameters we need to integrate

• From estimated model parameters we describe the random effect’s distribution
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Summary: Estimation with purely fixed effects

• We have:

Observations: y = (y1, y2, . . . , yn)

Parameters (µ, σ) in model: yi ∼ N(µ, σ2)

• Choose parameters which makes our model best match the data (optimize likelihood).
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Estimation with random effects

• We have:

Observations: y

Unobserved random effects: u

Parameters (θ) in model: (y, u) ∼ D(θ)
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• How do we estimate our parameters when some of our observations are not observed?
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Estimation with random effects — 2

• The banana is only an intermediate calculation

1: Joint model (banana) is determined

from model parameters θ

2: Marginal model is calculated from

joint by integration

3: Marginal is matched to data as always

• Imagine the distribution D(θ) is described by

a likelihood function L(y, u, θ), then:

LM (y, θ) =
∫
L(y, u, θ)du

is the marginal likelihood.

y (observed)

 0.2 
 0.4 

 0.6 

~anielsen/index.html


Laplace approximation of the needed integral

• We can approximate the needed integral by:∫
L(y, u, θ)du ≈

∫
exp(“2. order Taylor logL”)du = L(y, ûθ, θ)

√
(2π)q

| (−`′′uu(y, u, θ)|u=ûθ) |

• This is obtained from:

– 2. order Taylor approximation of logL around ûθ (so 1. order term is 0)

– recognizing the multivariate Gaussian integral

• Notice that to calculate this we only need to:

– Optimize

– Take derivatives

– Very very efficiently and accurately!

• In practice via TMB:

– Code up the joint negative log likelihood

– From R identify which quantities are considered to be random effects, as e.g:

obj <- MakeADFun(data, parameters, random="u")
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(There are other approaches)

Kalman filter

• Clever sequential algorithm

• For linear Gaussian systems (in its pure form)

• Requires initial assumptions

MCMC approximation

• Simulate Markov chain with posterior as its equilibrium

• Slow in complex models

• Difficult to judge convergence

• As precise as our patience allow
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Utilization in assessment models
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Missing observation

• Imagine we have a data set:

x1 =


x11

x12

x13

 , x2 =


x21

x22

x23

 , . . . , x7 =


x71

x73


• (Notice x72 is missing)

• Want to run model like:

xi ∼ N(µ,Σ) , i = 1 . . . 7

• With random effects: Define the missing as a random effect - keep model code simple

x1 =


x11

x12

x13

 , x2 =


x21

x22

x23

 , . . . , x7 =


x71

U

x73


• Without random effects: specialized code to find marginal distribution

• Simple in this case — but not in general f(xi) ∼ N(µ,Σ)
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Missing observations (code ex)

• Some of the observations in the obs vector are missing NA

• On the R-side we can add the random effects as:

par$missing <- numeric(sum(is.na(mydata$obs))) ## count them

obj <- MakeADFun(mydata , par , random="missing")

• Then in the C-code we can use them where observations are missing

int idxmis =0;

for(int i=0;i<nobs;i++){

if(isNA(obs(i))){

obs(i)=missing(idxmis ++);

}

}

• The rest of the program is unchanged.

• Then the model can work where observations were missing and even produce predic-

tions of the missing (if we should need it).

• Remember we are using the Laplace approximation

• (isNA is a small helper function)
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Introduce correlations

• For a mackerel stock we need to use tags

• The expected number of tags returned r
(j)
a,y from the j′th release is:

µ(j)
a,y = nscan

R(j)psurv

N (j)

• where N (j) is the number in the cohort at release time

• Model could be:

r(j)
a,y ∼ NB(µ(j)

a,y, φ) , independent

• Possibly we can expect the recaptures from same release event (j) to be correlated

• Can use random effects to introduce such correlations:

µ(j)
a,y = nscan

R(j)psurv

N (j)
eUj

• Here Uj ∼ N (0, σ2
U )

• Getting correlation structure correct is the key part in getting correct weighting
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Flexible processes over time

• A big challenge in parametric models - many problematic options available, e.g:

– Constant

– Constant in blocks (how many and where to cut)

– Splines (how flexible e.g. no nodes)

– Mean plus deviances (what should dev-sd be fixed at)

• One of the best features of random effects is that you can use random processes, e.g:

logFy+1 = logFy + εy , where εy ∼ N (0, σ2
ε)

– Flexible

– Few parameters

– No artificial choices

– Natural framework for timeseries

• “Anything with a y-subscript should be a random effect” — Noel Cadigan
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Processes in assessment

• The logical unobserved ones

– Recruitment

– Survival

– Fishing mortality

• But should really also apply to:

– Mean weights (stock, catch, landed, discard)

– Maturity

– Landing fraction

– Natural mortality

• Should be inside the model because all of these processes are likely not independent
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We need to predict

• Too much smoothing will bias the signal

• Too little smoothing will drown the signal in noise

• Correct amount will help you look ahead
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• Correct amount should not be subjective (e.g: 5-year average, fixed dev-sd, or spline

nodes)

• Correct amount should be estimated
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Predictions

• Random effects models are designed to predict

• Prediction is obvious when you have a model like this:

logN1,y

logN2,y

...

logF1,y

logF2,y

...


= T (



logN1,y−1

logN2,y−1

...

logF1,y−1

logF2,y−1

...


) + εy−1

• and you know T and the distribution of ε, and have estimated all parameters.

• What is estimated is exactly how to move to the next time-step

• Noise is split into observation noise and process noise

• The estimated process noise express how well we can expect to predict

• Smoothness should be part of what we estimate
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Prediction and cross-validation

• Validate if the model is realistic w.r.t. coverage of confidence intervals

• Of special interest is the 2-3 year ahead predictions
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• The only thing that is real is the observations

• when evaluating (and comparing) models we should look at their ability to predict

observations.

• Prediction should be part of the model — not left to an afterthought
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Spatial extensions

• Random processes in 2D is a logical tool for spatial models

• Often we don’t really want 5 boxes

• We need a flexible structure

• We need to predict to patches of space where we have less data

• So all said for the time varying quantities can be repeated for space

• In practice it may still make the models (too) slow

• Many efficient approaches (e.g. AR×AR, GMRF, Matérn) have recently become

available in TMB
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Correlations between stocks

• Stock development of multiple stocks can be linked in many ways

– One stock can eat another

– They can compete for same resources

– They can depend on the same environmental conditions

– They can be targeted by the same fishing fleets

• Most likely stocks are linked by a combination of many effects

• Multi-species models become hugely complex and data hungry

• However if we have stocks as random processes, then it is fairly simple to model them

as correlated

• These estimated correlations can for instance help us:

– get more realistic short-term predictions

– if data is poor or missing sometimes for one of the stocks

– get more realistic uncertainties

• The added model complexity is minimal
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Linked stocks
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library(stockassessment)

cbh <- fitfromweb("cbh2015_tmb")

wbh <- fitfromweb("wbss_herring_2017_tmb")

library(multiStockassessment)

stocks <- c(WBH=wbh ,CBH=cbh)

cs<-suggestCorStructure(stocks ,nAgeClose =2)

mfitS <-multisam.fit(stocks ,cs)
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Simulation

• Fairly recent addition to TMB makes it simple to simulate from your models

• Simply add a simulation block everywhere you add to your likelihood function

for(int i=1;i<y.size();i++){

ans+=-dnorm(lam(i),lam(i-1),sdRw ,true);

SIMULATE{

lam(i)=rnorm(lam(i-1),sdRw);

}

}

for(int i=0;i<y.size();i++){

ans+=-dnorm(y(i),lam(i),sdObs ,true);

SIMULATE{

y(i)=rnorm(lam(i),sdObs);

}

}

SIMULATE{

REPORT(lam)

REPORT(y)

}

• Then from the R-side you can simply do:

simdata <- obj$simulate(complete=TRUE)
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Check Laplace via simulation

• We can compare results to mcmc, but then we have to deal with all the issues with

mcmc.

• TMB offers a very neat approach

• The expectation of the gradient of the negative log-likelihood is 0.

Eθ∇`(θ;X) = 0

• This means if we simulate from the model, then the average gradient should be zero.

• But this only holds for the real likelihood.

• So if the approximation is wrong, then the average gradient will not be zero

• We can simulate as many data sets as we wish, so we can test this.

• Notice: that even the smallest bias will be detected if we simulate enough

• Notice: Models with a modest bias can still be useful
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Final remarks

• Random effects are useful in many parts of assessment modelling

• Modelling tool should provide efficient ways to estimate models with random effects

• Especially for next-generation models

• More details in:

– DA Fournier, HJ Skaug, J Ancheta, J Ianelli, A Magnusson, MN Maunder, A Nielsen, J Sibert 2012. AD Model

Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear

models. Optimization Methods and Software 27 (2), 233-249

– K Kristensen, A Nielsen, CW Berg, HJ Skaug, B Bell 2016. TMB: Automatic differentiation and Laplace

approximation. Journal of Statistical Software 70 (5), 1-21

– A Nielsen, and CW Berg 2014. Estimation of time-varying selectivity in stock assessments using state-space

models. Fisheries Research 158, 96-101

– CM Albertsen, A Nielsen, UH Thygesen 2017. Connecting single-stock assessment models through correlated

survival. ICES Journal of Marine Science 75 (1), 235-244

– UH Thygesen, CM Albertsen, CW Berg, K Kristensen, and A Nielsen 2017. Validation of state space models

fitted as mixed effects models. Environmental and Ecological Statistics 24 (2), 317-339

– http://tmb-project.org

– https://github.com/fishfollower/SAM

Thank you for listening
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Appendix (random stuff someone may ask for)
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Approx. REML inference for variance parameters

• Restricted/residual maximum likelihood reduces bias for variance parameters

• Especially important for small sample sizes

• Difficult to derive for non-linear models

• Can be approximated by defining mean-value parameters as random effects
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The Laplace approximation

• We need to calculate the difficult integral

LM (θ, y) =

∫
Rq
L(θ, u, y)du

• So we set up an approximation of `(θ, u, y) = logL(θ, u, y)

`(θ, u, y) ≈ `(θ, ûθ, y)− 1

2
(u− ûθ)t

(
−`′′uu(θ, u, y)|u=ûθ

)
(u− ûθ)

• Which (for given θ) is the 2. order Taylor approximation around:

ûθ = argmax
u

L(θ, u, y)
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• With this approximation we can calculate:

LM (θ, y) =

∫
Rq
L(θ, u, y)du

≈
∫
Rq
e`(θ,ûθ,y)− 1

2
(u−ûθ)t(−`′′uu(θ,u,y)|u=ûθ)(u−ûθ)du

= L(θ, ûθ, y)

∫
Rq
e−

1
2

(u−ûθ)t(−`′′uu(θ,u,y)|u=ûθ)(u−ûθ)du

= L(θ, ûθ, y)

√
(2π)q

| (−`′′uu(θ, u, y)|u=ûθ) |

• In the last step we remember the normalizing constant for a multivariate normal, and

that |A−1| = 1/|A|.

• Taking the logarithm we get:

`M (θ, y) ≈ `(θ, ûθ, y)− 1

2
log(|

(
−`′′uu(θ, u, y)|u=ûθ

)
|)+q

2
log(2π)
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The math

Eθ (∇`(θ;X)) =

∫
Pθ(x)∇`(θ;x)dx

= −
∫
Pθ(x)

1

Pθ(x)
∇Pθ(X)dx

= −∇
∫
Pθ(x)dx

= 0
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Notice we have already seen this

• In the Poisson distribution the variance is equal to the mean, which is an assumption

that is not always valid.

• Consider the model:

Y ∼ Pois(λ), where λ ∼ Γ

(
n,

1− φ
φ

)
0 < φ < 1

• It can be shown that:

Y ∼ Nbinom(n, φ)

• Notice:

– No λ in marginal likelihood for Y

– Analytical integration is not the typical case
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