

# Estimating the movement rate of bigeye tuna in the eastern Pacific Ocean

Haikun Xu, Cleridy Lennert-Cody, Mark Maunder, Carolina Minte-Vera, Juan Valero, Jon Lopez, Kurt Schaefer, Dan Fuller, John Hampton, and Alexandre Aires-da-Silva

Inter-American Tropical Tuna Commission



CAPAM Spatial Assessment Models Workshop Oct. 02, 2018, La Jolla, CA



### Outline

Available tagging data

Mark-recapture model

Estimates of Movement rate

Conceptual movement pattern

## Conventional tagging data



# Histogram of recapture latitude and longitude by release location



## Density of recapture longitude by time at liberty



## Estimating movement rate

- A mark-recapture model is built to estimate the movement rate from the WEPO to the EEPO
- The fish recaptured with a time at liberty <3 months are excluded</li>
- Key assumptions we made to simplify the model:
  - 1. The movement rate westward across 110°W is zero
  - 2. The movement rate westward across 150°W is zero



## Likelihood functions



The likelihood for a fish both released and recaptured west of 110°W:

$$L_i(q, x | D_{W \to W}) = P(\text{movement}) \times P(\text{survival}) \times P(\text{recapture})$$

$$= (1 - x)^{n_i} \times (1 - qe_1)^{n_i - 1} (1 - M)^{n_i - 1} \times qe_1$$
always in the WEPO

x: quarterly movement rate eastward across 110°W

 $n_i$ : quarters at liberty

*M*: natural mortality rate

 $e_1$ : the average density of floating-object sets in the WEPO

q: transforms fishing intensity  $(e_1)$  into recapture probability  $(qe_1)$ 

### Likelihood functions



Movement is assumed to occur

in the middle of quarter  $n_m$ 

The likelihood for a fish released west of  $110^{\circ}$ W and recaptured east of  $110^{\circ}$ W:

$$L_{j}(q,x|D_{W\to E}) = P(\text{movement}) \times P(\text{survival}) \times P(\text{recapture})$$

$$= \sum_{n_{m}=1}^{n_{j}-1} \left( x(1-x)^{n_{m}-1} \times (1-qe_{1})^{n_{m}-0.5} (1-qe_{2})^{n_{j}-1-(n_{m}-0.5)} (1-M)^{n_{j}-1} \times qe_{2} \right)$$

x: quarterly movement rate

 $n_i$ : quarters at liberty

*M*: natural mortality rate

 $e_2$ : the average density of floating-object sets in the EEPO  $\approx 4e_1$ 

q: transforms fishing intensity  $(e_2)$  into recapture probability  $(qe_2)$ 

 $n_m$ : the quarter when sample j moved from the WEPO to the EEPO (unknown)

### Maximum Likelihood Estimation

Recapture scaler (q) and movement rate (x) are estimated using maximum likelihood

$$LL(q, x|D_{W\rightarrow}) = \sum_{i} \log(L_i(q, x|D_{W\rightarrow W})) + \sum_{j} \log(L_j(q, x|D_{W\rightarrow E}))$$

 $\hat{x} \approx 0.16$ : 16% of BET move eastward across 110°W in each quarter \*\*\* It should be applied to immature BET

# Distribution of recapture location by release longitude and length at recapture

Red and blue dots represent samples with measured and estimated length at recapture, respectively



length at recapture < 135cm

length at recapture > 135cm

### Archival tagging data are in accordance with conventional tagging data

- BET in the CPO tend to move eastward
- BET in the EPO seldomly move westward beyond 110W
- BET in the equatorial region (10S-10N) seldomly move to higher latitudes



### How about south of 10S?

BET tagged south of 10S tend to move eastward and a noticeable proportion move northward across 10S (low confidence due to the small sample size)



#### Presence/absence in the FAD fishery



### Proposed movement scenarios of BET

General movement rate configurations in the spatial model:

- Two age groups: juvenile (3-8 quarters) and adult (>14 quarters)
- No movement prior to age 3 (quarters)
- Linear interpolated movement rates between the two age groups
- Time-invariant

#### Number of movement rate scenarios

- One scenario for juvenile BET
- Three scenarios for adult BET

## Conceptual movement scenario for juvenile BET



- The two movements eastward across 110W are most pronounced
- The two movements northward across 10S are noticeable but less pronounced and credible
- The other eight movements are relatively minor

# Conceptual movement scenarios for adult BET Scenario1: same as that for juvenile BET



- The two movements eastward across 110W are most pronounced
- The two movements northward across 10S are noticeable but less pronounced and credible
- The other eight movements are relatively minor

# Conceptual movement scenarios for adult BET Scenario2: east-west diffusion



- The four movements across 110W are most pronounced and have the same rate (x = 4, 8, 12, etc.)
- The two movements northward across 10S are noticeable but less pronounced and credible
- The other six movements are relatively minor

# Conceptual movement scenarios for adult BET Scenario3: east-west diffusion and advection



- The four movements across 110W are most pronounced and have different rates (x>y or x<y)
- The two movements northward across 10S are noticeable but less pronounced and credible
- The other six movements are relatively minor

## Available tagging data are limited in several aspects

- Latitudinally: 10S-10N
- Longitudinally: 140W and 95W
- Life history: immature (age 1-3yrs)
- Sample size: archival tagging data
- Tag shedding and reporting rates are both unknown



## Summary of proposed movement scenarios



#### Juvenile movement:

- Eastward movement at a rate of ~16% per quarter
- Noticeable northward movement but the rate of which is unknown
- The other movements are relatively minor (fix at 0 or 2%?)

#### **Adult movement:**

- No informative data are available so assumptions need to be made:
  - 1. same as juvenile's
  - 2. east-west diffusion
  - east-west diffusion and advection

## Thank you!

Any questions/comments/suggestions?

## Conventional tagging data





## Recapture longitude versus Length at recapture

- For those which were released in the CPO, the expected recapture location moved eastward as the length at recapture increases
- For those which were released in the EPO, the expected recapture location stayed in the EPO until reaching maturity



blue dots: measured

red dots: estimated

length

black lines: length at

50% maturity