Estimating the movement rate of bigeye tuna in the eastern Pacific Ocean

Haikun Xu, Cleridy Lennert-Cody, Mark Maunder, Carolina Minte-Vera, Juan Valero, Jon Lopez, Kurt Schaefer, Dan Fuller, John Hampton, and Alexandre Aires-da-Silva Inter-American Tropical Tuna Commission

Outline

- Available tagging data
- Mark-recapture model
- Estimates of Movement rate
- Conceptual movement pattern

Conventional tagging data

Histogram of recapture latitude and longitude by release location

- Bigeye tuna tagged in the CPO tend to move eastward
- Bigeye tuna tagged in the EPO tend to stay within the EPO

Density of recapture longitude by time at liberty

Estimating movement rate

- A mark-recapture model is built to estimate the movement rate from the WEPO to the EEPO
- The fish recaptured with a time at liberty <3 months are excluded
- Key assumptions we made to simplify the model:

1. The movement rate westward across $110^{\circ} \mathrm{W}$ is zero
2. The movement rate westward across $150^{\circ} \mathrm{W}$ is zero

Likelihood functions

The likelihood for a fish both released and recaptured west of $110^{\circ} \mathrm{W}$:

$$
\begin{aligned}
L_{i}\left(q, x \mid D_{W \rightarrow W}\right) & =P(\text { movement }) \times P(\text { survival }) \times P(\text { recapture }) \\
& =(1-x)^{n_{i}} \times\left(1-q e_{1}\right)^{n_{i}-1}(1-M)^{n_{i}-1} \times q e_{1} \\
& \text { always in the WEPO }
\end{aligned}
$$

x : quarterly movement rate eastward across $110^{\circ} \mathrm{W}$ n_{i} : quarters at liberty
M : natural mortality rate
e_{1} : the average density of floating-object sets in the WEPO
q : transforms fishing intensity $\left(e_{1}\right)$ into recapture probability $\left(q e_{1}\right)$

Likelihood functions

The likelihood for a fish released west of $110^{\circ} \mathrm{W}$ and recaptured east of $110^{\circ} \mathrm{W}$:

$$
\begin{aligned}
& L_{j}\left(q, x \mid D_{W \rightarrow E}\right)=P(\text { movement }) \times P(\text { survival }) \times P(\text { recapture }) \\
& =\sum_{n_{m}=1}^{n_{j}-1}\left(x(1-x)^{n_{m}-1} \times\left(1-q e_{1}\right)^{n_{m}-0.5}\left(1-q e_{2}\right)^{n_{j}-1-\left(n_{m}-0.5\right)}(1-M)^{n_{j}-1} \times q e_{2}\right)
\end{aligned}
$$

x : quarterly movement rate n_{j} : quarters at liberty
M : natural mortality rate
e_{2} : the average density of floating-object sets in the EEPO $\approx 4 e_{1}$
q : transforms fishing intensity $\left(e_{2}\right)$ into recapture probability $\left(q e_{2}\right)$
n_{m} : the quarter when sample j moved from the WEPO to the EEPO (unknown)

Maximum Likelihood Estimation

Recapture scaler (q) and movement rate (x) are estimated using maximum likelihood

$$
\mathrm{LL}\left(q, x \mid D_{W \rightarrow}\right)=\sum_{i} \log \left(L_{i}\left(q, x \mid D_{W \rightarrow W}\right)\right)+\sum_{j} \log \left(L_{j}\left(q, x \mid D_{W \rightarrow E}\right)\right)
$$

$\hat{x} \approx 0.16$: 16% of BET move eastward across $110^{\circ} \mathrm{W}$ in each quarter *** It should be applied to immature BET

Distribution of recapture location by release longitude and length at recapture

Red and blue dots represent samples with measured and estimated length at recapture, respectively

Archival tagging data are in accordance with conventional tagging data

- BET in the CPO tend to move eastward
- BET in the EPO seldomly move westward beyond 110 W
- BET in the equatorial region (10S-10N) seldomly move to higher latitudes

How about south of 105 ?

BET tagged south of 10 S tend to move eastward and a noticeable proportion move northward across 10 S (low confidence due to the small sample size)

Presence/absence in the FAD fishery

Proposed movement scenarios of BET

General movement rate configurations in the spatial model:

- Two age groups: juvenile (3-8 quarters) and adult (>14 quarters)
- No movement prior to age 3 (quarters)
- Linear interpolated movement rates between the two age groups
- Time-invariant

Number of movement rate scenarios

- One scenario for juvenile BET
- Three scenarios for adult BET

Conceptual movement scenario for juvenile BET

Four areas correspond to twelve between-area movements, within which:

- The two movements eastward across 110 W are most pronounced
- The two movements northward across 10S are noticeable but less pronounced and credible
- The other eight movements are relatively minor

Conceptual movement scenarios for adult BET

 Scenario1: same as that for juvenile BET

Four areas correspond to twelve between-area movements, within which:

- The two movements eastward across 110W are most pronounced
- The two movements northward across 105 are noticeable but less pronounced and credible
- The other eight movements are relatively minor

Conceptual movement scenarios for adult BET

Scenario2: east-west diffusion

Four areas correspond to twelve between-area movements, within which:

- The four movements across 110 W are most pronounced and have the same rate ($x=4,8,12$, etc.)
- The two movements northward across 10 S are noticeable but less pronounced and credible
- The other six movements are relatively minor

Conceptual movement scenarios for adult BET

Scenario3: east-west diffusion and advection

Four areas correspond to twelve between-area movements, within which:

- The four movements across 110 W are most pronounced and have different rates ($x>y$ or $x<y$)
- The two movements northward across 10 S are noticeable but less pronounced and credible
- The other six movements are relatively minor

Available tagging data are limited in several aspects

- Latitudinally: 10S-10N
- Longitudinally: 140W and 95W
- Life history: immature (age 1-3yrs)
- Sample size: archival tagging data
- Tag shedding and reporting rates are both unknown

Conventional tagging

Summary of proposed movement scenarios

Juvenile movement:

- Eastward movement at a rate of $\sim 16 \%$ per quarter
- Noticeable northward movement but the rate of which is unknown
- The other movements are relatively minor (fix at 0 or 2% ?)

Adult movement:

- No informative data are available so assumptions need to be made:

1. same as juvenile's
2. east-west diffusion
3. east-west diffusion and advection

Thank you!

Any questions/comments/suggestions?

Conventional tagging data

Recapture longitude versus Length at recapture

- For those which were released in the CPO, the expected recapture location moved eastward as the length at recapture increases
- For those which were released in the EPO, the expected recapture location stayed in the EPO until reaching maturity

blue dots: measured length
red dots: estimated length
black lines: length at 50\% maturity

