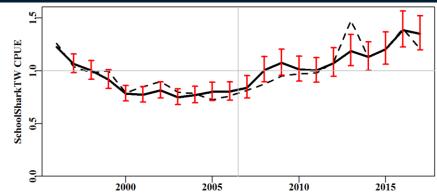


Close Kin Mark Recapture – can we integrate it into stock assessment packages?

Robin Thomson, Mark Bravington, Rich Hillary


CAPAM Next Generation Stock Assessment Methods workshop November 2019, Wellington, NZ

- SESSF
- School shark targeted fishery closed
- Choke species for gummy shark

- Index of abundance??
- Dedicated survey....or CKMR

- It's a MARK-RECAPTURE method able to estimate:
 - Absolute abundance time series (of breeding animals)
 - Natural mortality (and total mortality), for adults
 - (relative) Fecundity-at-age
 - Mean age of adult population

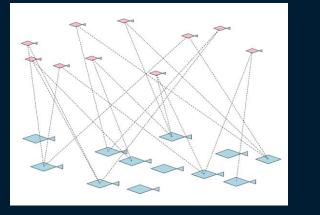
What	with	gives	and
POPs		ideal "SSB"	rel.fec@A
close HSPs	POPs	\bar{A}_{adult}	Nya
far HSPs	POPs, HSPs	$\bar{z}_{ m adult}$	
C@A or @L	HSPs	sel@A	m _{adult}

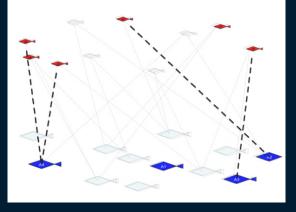
- All it needs is
 - A bunch of tissue samples with meta-data -> genotypes

(age), length, date, (location,)

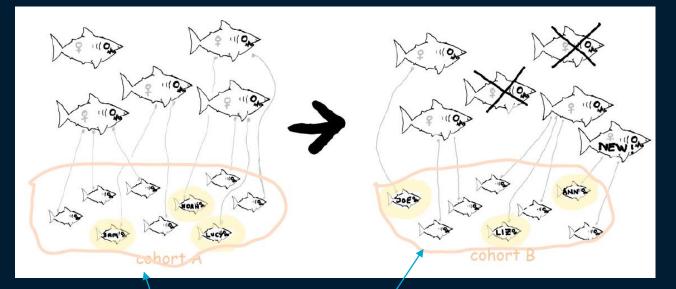
fit-for-purpose

- Total catch-at-age (or length) data (but you don't have to)
- NOT CPUE or survey indices

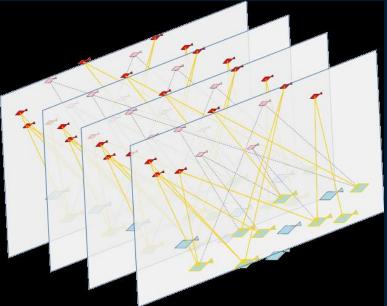




Population


Sample, and POPs

"Assumption": Every fish has just one mother (and one father)
Model: Pr [this pair is a POP] = 2/N
Data: Number of POPs observed and comparisons done
More complicated in practice (but see Ruzzante et al brook trout, MEE)


How does CKMR work? HSPs

Model: Pr [i_A has the same mother as j_B] = her survival / N_B

More complicated in practice

Classic population dynamics model

- Age & sex structured population model to calculate the prob's
- Each prob'y depends on age/length, sex, birth year of the samples
- Fecundity at age (length) & sex
- Log-likelihood CKMR is LOTS of Bernoulli trials
 - can use CPUE, surveys ... e.g. SBT

- POP probability loops
 - s₁: Loop over parent's sex
 - y₁: Loop over sampling years (for 'parent')
 - a₁: Loop over ages (age-at-maturity to plus-1 for 'parent')
 - y₂: Loop over sampling years (for 'offspring')
 - a₂: Loop over ages (age-at-maturity to plus-1 for 'offspring')
 b₂: y₂-a₂
 - Pr[s_1 , y_1 , a_1 , y_2 , a_2] = fec(s_1 , $a_{1_in_b2}$) / $\Sigma_{a'}$ [N_{s1, a', b2} fec (s_1 , a')]

- POP probability loops
 - s₁: Loop over parent's sex
 - y₁: Loop over sampling years (for 'parent')
 - a₁: Loop over ages (age-at-maturity to plus-1 for 'parent')
 - b₂: Loop over birth years (for 'offspring'), y₂-a₂

• Pr[s_1, y_1, a_1, y_2, a_2] = fec($s_1, a_{1_in_b2}$) / $\Sigma_{a'}$ [N_{s1, a', b2} fec (s₁, a')]

- *Might* be complications e.g.
 - might know length, not age, for (some) samples
 - -fecundity might be length &/ age dependant
 - lethal/non-lethal eg GNS
 - length error or ageing error
 - populations / stock structure
 - other dimensions?
 - -plus group

• HSPs

- s_p: Loop over unseen parent's sex
 - b₁: Loop over birth year of first animal
 - b₂: Loop over birth year of second animal

• $P(s_p, b_1, b_2) = \sum_{a'} N_{sp,a',b1} * survival(s_p, a', b_1, b_2) * {fec (s_p,a_b_1) / \sum_{a''} [N_{a'',b1}]} * {fec (s_p,a_b_2) / \sum_{a''} [N_{a'',b2}]}$

- Again, dims could blow out
 - sex of sibs (for length)
 - length error, location, ?

- 1. Design
- 2. Sampling
- 3. Genetics / kin finding the right kind!
- 4. Close kin model

- How many samples will we need?
 - -> cost of project
 - -> followed by full CKMR project
- Uses the same probability calculations
 - (probably ignoring complications)
- No estimation of abundance / parameters necessary
 these are assumed, use existing assessment if possible
- Code should be able to run in 'design mode'

- What are the essential elements of a CKMR model?
 - known for *typical* teleost & *typical* shark
 - But only 5-ish species have completed CKMR studies at CSIRO (2 published)
 - How many will be bespoke?

- LOTS of dimensions!
- Can we remove some? e.g. length
 - A big / fecund 10yo was a big / fecund 5yo -> systematic
 - Does this matter?
- Can we deal with spatial structure?
 - Yes for Mediterranean ABT
 - Seems OK for Paul Conn's bearded seal dispersion simulation
- How **bespoke** are these models?

- CKMR is magic!
 - Gives absolute abundance, M, ...
 - No issues with tag loss, tag reporting...
 - Forgiving sampling design (need not sample everywhere)
- CKMR for next gen stock assessment model
 - Fits into existing statistical stock assessment paradigm
 - Additional Likelihood component
 - Still working out the 'generic CKMR model'
 - Design mode

Generic 'stand-alone' CKMR model for SESSF (under development)

• Experiment with what's possible

Thank you

Australia's National Science Agency