
Engineering Practices for

Maintainable

Software

Matthew Supernaw

Scientific Programmer

National Oceanic and Atmospheric Administration

National Marine Fisheries Service

NSAP Modeling Team

1984

Overview

● Software Engineering

● What is Software Engineering

(SE)?

● Analysis and Synthesis

● SE in Practice

● Core Principles

● Programming Paradigms

● Structural

● Object-oriented

● Key Concepts

● Modularity

● Extensibility

● Scalability

● Incremental Development

● Maintainability

● Tips for Better Code

● Use a Coding Convention

● Write Useful Comments

● Write Self-describing Code

● Use an IDE

● Refactor

● Avoid Global Variables

● Use Meaningful Names

● Use Meaningful Structures

● Use Version Control Software

● Use documentation generators

● Code for Efficiency

● Profile often

● Summary

What is Software Engineering?

What is Software Engineering?

• The application of a systematic, disciplined,

quantifiable approach to the development and

maintenance of software.

What is Software Engineering?

• The application of a systematic, disciplined,

quantifiable approach to the development and

maintenance of software.

What is Software Engineering?

• The application of a systematic, disciplined,

quantifiable approach to the development and

maintenance of software.

Analysis And Synthesis

Analysis: break down a larger problem into

smaller understandable pieces (modules).

Synthesis: construct software from the smaller

understood pieces.

Analysis And Synthesis

Problem

Subproblem 1 Subproblem 2 Subproblem 3 Subproblem 4

Analysis And Synthesis

Generalized Stock Assessment
Framework

Mortality
Spawning
Biomass Recruitment Selectivity ...

Software Engineering

in Practice

Phases of A Software Engineering Project:

• Communication

• Planning

• Modeling

• Development

• Testing

• Deployment

Software Engineering

in Practice

Communication:

• Meet with stakeholders.

• Gather requirements.

• Identify what exactly we are trying to solve.

• Document decisions.

Software Engineering

in Practice

Planning:

• Planning is iterative.

• Gauge the project scope.

• Identify what resources are needed to solve the

problem.

• Engage stakeholders in planning activity.

• Communicate the development plan.

Software Engineering

in Practice

Modeling and Design:

• The information domain of the problem needs to

be understood (information flows in and out of

the system and subsystems).

• The function of the software should be defined.

• The behavior of the software should be

represented.

Software Engineering

in Practice

Development:

• Use structured or object-oriented programming

(both emphasize modularity).

• Use appropriate data structures.

• Write self-describing code.

• Conduct regular code reviews.

• Unit test code.

• Refactor as necessary.

Software Engineering

in Practice

Testing:

• Identify areas that need improvement.

• All test should be traceable to software

requirements.

• Tests should be planned before testing begins.

Software Engineering

in Practice

Deployment:

• A complete package should be created.

• A support system should be established prior to

release.

• Documentation should be provided to the end

user.

• A maintenance plan should be established

(extensions and updates).

Core Principles of SE
Starting High Level

• Think about the problem before you start to develop the solution

• Divide and Conquer

• Break down the problem into smaller understandable modules.

• This makes a large problem manageable.

• KISS (Keep It Simple, Stupid!)

• Don’t add unnecessary complexity.

• Keep Learning

• Stay up to date on new technology.

• Acknowledge your mistakes and learn from them.

• Remember the purpose of the software

• Keep the big picture in mind.

• Don’t add unnecessary functionality.

• Remember you aren’t necessarily the end user

• Keep in mind the the end user won’t necessarily be as familiar with the system

as you.

Core Principles of SE

The Process
• Have a Vision.

• If you don’t know exactly what to build, you wont build the right thing.

• Ask questions and get clarity.

• Be Systematic

• Take a logical and thoughtful approach to the design.

• Analyze and Synthesize.

• Develop Iteratively

• Supports modularity.

• Compliments extensibility.

• Make it work first, then optimize

• Write it first, profile and optimize after.

Core Principles of SE

Put thought into the Code

• YAGNI (You Ain't Gonna Need It!)

• Don’t add features that aren’t required.

• Don’t add features that aren’t required.

• Don’t add features that aren’t required

• DRY (Don't Repeat Yourself)

• Reuse code whenever possible.

• Don’t re-invent the wheel

• Use existing solutions if the code isn’t related to the fundamentals of your

application.

• Just be aware of deep dependency and the issues that may arise.

• Debugging is harder than writing code

• Write readable code rather than compact code.

• It’s likely that someone else will have to work on your code later.

Programming Paradigms

Programming Paradigms : Structured

Programming

What is structured programing?

Programming Paradigms: Structured

Programming

What is structured programing?

In structured programing, the program is divided

into small modules so it’s easier to understand

Programming Paradigms: Structured

Programming

• A logical programming method that is

considered a precursor to object-oriented

programming (OOP).

• Facilitates program understanding and

modification

• Has a top-down design approach

• A system is divided into compositional

subsystems

Programming Paradigms: Structured

Programming
While not done

Spawn_Recruit

Mortality

NumbersAtAge

CatchAtAge

Compute S0

Compute #
recruits

Compute F

Compute Z

So on…

So on…

Programming Paradigms: Structured

Programming

Main

Spawn_Recruit Mortality NumbersAtAge CatchAtAge

Compute S0

Compute #
recruits

Compute F

Compute Z

Programming Paradigms:

Object-oriented Programming

What is object oriented programing?

Programming Paradigms:

Object-oriented Programming

What is object oriented programing?

Object-oriented programming (OOP) is a software

programming model constructed around objects.

This model compartmentalizes data into objects

(data fields) and describes object contents and

behavior through the declaration of classes

(methods).

Programming Paradigms:

Object-oriented Programming

What is an Object?

• Software representation of a real-world object

• Just as with real-world objects, software objects have state and

behavior

• For example, Dogs have state (name, color, breed) and

behavior (barking, fetching, drooling)

Programming Paradigms:

Object-oriented Programming

Key concepts of OOP

• Encapsulation: This makes the program structure easier to

manage because each object’s implementation and state are

hidden behind well-defined boundaries

• Polymorphism: This means abstract entities are implemented

in multiple ways

• Inheritance: This refers to the hierarchical arrangement of

implementation fragments (reusability).

Programming Paradigms:

Object-oriented Programming

Encapsulation:

Refers to an object's ability to hide data and behavior that are not

necessary to its user. Encapsulation allows a group of members and

methods to be represented as a single unit.

Benefits:

• Protection of data from accidental corruption

• Flexibility and extensibility of the code

• Reduction in complexity

• Lower coupling between code fragments and hence improvement

in code maintainability

Programming Paradigms:

Object-oriented Programming

Polymorphism:

The dictionary definition of polymorphism refers to

a principle in biology in which an organism or

species can have many different forms or stages.

This principle can also be applied to object-

oriented programming.

Programming Paradigms:

Object-oriented Programming
Polymorphism:

Programming Paradigms:

Object-oriented Programming
Polymorphism:

Same Signature,
Different Logic

Polymorphism:

Programming Paradigms:

Object-oriented Programming

Encapsulation

Programming Paradigms:

Object-oriented Programming

Inheritance:

Inheritance allows the user to define a class in terms of another

class, which makes it easier to create and maintain an application.

This also provides an opportunity to reuse the code functionality and

fast implementation time.

Programming Paradigms:

Object-oriented Programming

Inheritance:

A class can be derived from more than one classes, which means it

can inherit data and functions from multiple base classes. To define

a derived class, we use a class derivation list to specify the base

class(es)

Programming Paradigms:

Object-oriented Programming
Inheritance:

Output

20

Programming Paradigms:

Object-oriented Programming
Inheritance:

Output

20

Derivation List

Programming Paradigms:

Object-oriented Programming
Inheritance:

Output

20

Rectangle
inherits methods

from Shape

Key Concepts

Key Concepts

Key Concepts

• Modularity

• Reusability

• Extensibility

• Extensible Design

• Iterative Development

• Scalability

• Maintainability

Key Concepts: Modularity

• Well defined, independent components

(functions or objects)

• Perform logically discrete functions

• Building blocks for a larger component(s)

• Can be implemented and tested in isolation

before integration

• Accommodates division of work

• Improves maintenance

Key Concepts: Modularity

Generalized Stock Assessment
Framework

Mortality
Spawning
Biomass Recruitment Selectivity ...

Key Concepts: Modularity

Generalized Stock Assessment
Framework

Mortality
Spawning
Biomass Recruitment Selectivity ...

Key Concepts: Reusability

Reusability, a product of modularity, is the use of

existing elements within the software development

process. These elements are products and by-

products of the software development life cycle

and include code, test suites, designs and

documentation.

Key Concepts: Extensibility

Extensibility is the measure of a software

components capacity to be appended with

additional members or features. An application is

considered extensible when its operations may be

augmented with add-ons and plugins without the

need for reengineering.

Key Concepts: Extensible Design

• Extensible design is to accept that not all

features can be designed in advance

• The system starts as basic framework that

allows for changes (extensions)

• Extensible design allows small changes to be

implemented upon request (Agile development)

• Extensibility imposes fewer dependencies

during development

Key Concepts: Iterative Development

Iterative development is a methodology that

divides the project into smaller pieces (modules).

The main concept of iterative development is to

create small projects with well defined scope within

a project. Iterative development naturally

complements extensible design.

Key Concepts: Scalability

What is scalability?

Key Concepts: Scalability

What is scalability?

Software scalability refers to a systems ability

to handle an increase in workload.

Key Concepts: Scalability

• A system is said to be scalable when it does not require

reengineering to handle an increase in workload.

• “Workload” may refer to required data storage, number

of users, or anything that pushes the software past its

original capacity.

• Designing software with scalability in mind saves time

and money in the future.

Key Concepts: Scalability

What’s the problem with scaling failures?

Key Concepts: Scalability

What’s the problem with scaling failures?

• Increased workload becomes a barrier to

productivity.

Key Concepts: Scalability

What’s the problem with scaling failures?

• Increased workload becomes a barrier to

productivity.

• “Fixes” add complexity.

Key Concepts: Scalability

What’s the problem with scaling failures?

• Increased workload becomes a barrier to

productivity.

• “Fixes” add complexity.

• Complexity increases cost and decreases

effectiveness.

Key Concepts: Scalability

What’s the problem with scaling failures?

• Increased workload becomes a barrier to

productivity.

• “Fixes” add complexity.

• Complexity increases cost and decreases

effectiveness.

• Users abandon the product.

Key Concepts: Scaling Failure Solutions

Scaling Up

• Refers to the idea of adding more advanced

hardware to handle the increase in workload. For

example, a faster CPU or more memory.

• Best performance solution, most costly.

Key Concepts: Scaling Failure Solutions

Scaling Out

• Refers to the idea of adding more hardware, not more

advanced hardware.

• Much more widely used solution.

• Cost is lower because there isn’t a need for more

advanced hardware.

Key Concepts: Maintainability

Maintenance is the action of modifying a software

product after initial release.

Maintainability is the ease with which a software

product can be modified.

Key Concepts: Maintainability

Categories:

• Corrective Maintenance is a task performed to

identify and fix failures (bugs) in the system.

• Adaptive Maintenance is the implementation of a

changes as result to a change in the environment.

(hardware or operating system).

• Perfective Maintenance is the extension and

improvement of the software quality.

Key Concepts: Maintainability
Software Quality Characteristics for Enhanced

Maintainability:

• Flexibility: The ease at which the software can be amended.

• Reliability: Performance should be reliable with minimal faults.

• Portability: The application should run on different platforms,

Linux, Windows, Mac OS, etc.

• Efficiency: Practical and efficient use of system resources.

• Testability: Software should be tested easily and as a result

users can easily check that the results are correct.

• Understandability: Software should be easy for users to

understand.

• Usability: Usage is easy and comfortable.

Tips For Better Code

Tips For Better Code: Coding Convention

Why Have a Coding Convention?

Tips For Better Code: Coding Convention

Why Have a Coding Convention?

• 80% of a product’s lifetime cost goes to maintenance.

• Software is usually maintained by someone other than the original

author.

• Code conventions improve readability.

Tips For Better Code: Coding Convention

Common Coding Conventions

• C

• SEI CERT

• Bar Group

• C++

• Google

• SEI CERT C++

• Java

• Java Code Convention

• Software Monkey

• R

• R-core

https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://barrgroup.com/Embedded-Systems/Books/Embedded-C-Coding-Standard
https://google.github.io/styleguide/cppguide.html
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://tech.dolhub.com/article/computer/Coding-Conventions
https://cran.r-project.org/doc/manuals/R-ints.html#R-coding-standards

Tips For Better Code: Useful Comments

Write Useful Comments

You won’t appreciate them until you’ve stopped working on a project

for a while. Useful Comments make it easier for you and those after

you who have to maintain your code.

• Write meaningful, single line comments for easily understood

components.

• Write full paragraphs for components that are not easily

understood.

• For complex blocks of logic, describe what’s going on in words

before the logic appears.

Tips For Better Code: Self-Describing Code

Write Self-Describing Code

Give Symbols Human readable names.

• It makes source code easier to understand.

• It makes code easier to maintain and extend.

Tips For Better Code: Self-Describing Code

Write Self-Describing Code

Give Symbols Human readable names.

• It makes source code easier to understand.

• It makes code easier to maintain and extend.

Example

Tips For Better Code: Use An

IDE

Use an Integrated Development

Environment

Benefits:

• Expands Coders Capabilities.

• Increased Functionality.

• Navigate to members by treating them as hyperlinks.

• Autocompletion when you can't remember the names of all

members.

• Automatic code generation.

• Refactoring.

Tips For Better Code: Use An

IDE (Continued)

Use an Integrated Development

Environment

Benefits:

• Warning-as-you-type.

• Automated Testing.

• Integrated Debugger.

• Profiling.

• Integrated Source Control.

• Auto Code Formatting.

• Auto Code Completion.

• Call Graph Generation.

Tips For Better Code: Refactor

What is Refactoring?

Definition:

Refactoring consists of improving the internal structure of an existing program’s source

code, while preserving its external behavior.

Benefits:

• Refactoring improves objective attributes of code (length, duplication, coupling and

cohesion, cyclomatic complexity) that correlate with ease of maintenance.

• Refactoring helps code understanding.

• Refactoring encourages each developer to think about and understand design

decisions, in particular in the context of collective ownership / collective code ownership.

• Refactoring favors the emergence of reusable design elements (such as design

patterns) and code modules.

Tips For Better Code: Avoid

Global Variables

Avoid global variables whenever possible!

• A global variable is a variable defined in the 'main' program. Such

variables are said to have 'global' scope.

• A local variable is a variable defined within a function. Such variables

are said to have ‘local’ scope.

• They can be modified anywhere in the program, making it difficult to find

the source of change.

• Functions can access global variables and modify them.

• They violate the concept of modular programming.

• It’s better practice to send a variable as a parameter to a function.

Tips For Better Code: Use Meaningful Names

Use Meaningful Names:

• Good code should be meaningful in terms of variable names,

function/method names, and class names.

• Don’t use names like “fyr” or “lyr” for your variables. It is not

informative. “first_year” and “last_year” would be more

meaningful.

For example:

Tips For Better Code: Use Meaningful Names

Use Meaningful Names:

• Good code should be meaningful in terms of variable names,

function/method names, and class names.

• Don’t use names like “fyr” or “lyr” for your variables. It is not

informative. “first_year” and “last_year” would be more

meaningful.

For example:

It’s obvious what this
function does and

what it’s parameter is!

Tips For Better Code: Use Meaningful Names

The verb “calculate” makes it clear that the function is doing a calculation

rather than a lookup. The “logistic_selectivity” makes it clear what the

return value is.

Use Meaningful Names:

• Good code should be meaningful in terms of variable names,

function/method names, and class names.

• Don’t use names like “fyr” or “lyr” for your variables. It is not

informative. “first_year” and “last_year” would be more

meaningful.

For example:

It’s obvious what this
function does and

what it’s parameter is!

Tips For Better Code: Use Meaningful Structures

Use Meaningful Structures:

• Use a naming convention when naming directories and files.

• Use simple directory structures.

• Keep the directory hierarchy as shallow as possible.

• Try to split up code by it’s business logic (modules).

Tips For Better Code: Use

Version Control System

Version Control:

• There are many varieties to choose from.

• Managing changes should be easy.

• Choose whatever version control software works best for the

workflow of you and your team.

Popular Choices:

• Git

• Mercurial

• Apache Subversions

Tips For Better Code: Use

Documentation Generators

Code Documenters

• For large projects with many classes and functions, it’s

convenient to automatically generate API documentation.

• Document generators are useful for keeping track of what’s going

on in the code.

Useful Documentation Generators:

• Doxygen

• JavaDocs

• roxygen

http://doxygen.nl/
https://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

Tips For Better Code: Code For Efficiency

Code Efficiency:

• Code efficiency plays a vital role in applications in a high-

execution-speed environment where performance and scalability

are foremost.

• The goal of code efficiency is to reduce resource consumption

and completion time as much as possible.

• Simply put, the more efficient the code, the lower the

computational overhead!

Tips For Better Code: Code For Efficiency

Example of Inefficient Code:

Tips For Better Code: Code For Efficiency

Example of Inefficient Code:

Case statements are expensive
operations.

Tips For Better Code: Code For Efficiency

Example of Efficient Code Using the Structured Programming

Paradigm:

Example of Efficient Code Using the Structured Programming

Paradigm:

The correct function is called directly
without the use of

case statements.

Tips For Better Code: Code For Efficiency

Example of Efficient Code Using the Object-Oriented

Programming Paradigm:

Tips For Better Code: Code For Efficiency

Example of Efficient Code Using the Object-Oriented

Programming Paradigm (Continued):

Tips For Better Code: Code For Efficiency

Example of Efficient Code Using the Object-Oriented

Programming Paradigm (Continued):

Tips For Better Code: Code For Efficiency

Example of Efficient Code Using the Object-Oriented

Programming Paradigm (Continued):
Recruitment
model pointer

Tips For Better Code: Code For Efficiency

Example of Efficient Code Using the Object-Oriented

Programming Paradigm (Continued):
Recruitment

model pointer.

Initialize the
recruitment

model. Called
at start up.

Tips For Better Code: Code For Efficiency

Example of Efficient Code Using the Object-Oriented

Programming Paradigm (Continued):
The correct

method is called
without the use of
case statements.

Tips For Better Code: Code For Efficiency

Tips For Better Code: Use A Profiler

What is a Profiler?

A profiler is an instrument used to perform dynamic analysis in a

running application in order to obtain information on performance in

regards to memory and CPU usage.

Tips For Better Code: Use A Profiler

Why Use A Profiler?

• Profilers allow you to find bottlenecks quickly.

• Find memory leaks.

• Collect statistics, such as memory usage, number of function

calls, amount of time spent in a function, etc.

Tips For Better Code: Use A Profiler

Tips For Better Code: Use A Profiler

Vital runtime
information

Summary

• Use a disciplined/systematic approach to development.

• Use a modular design pattern.

• Keep the design simple.

• Use a structured or object-oriented programming paradigm.

• Remember the key concepts.

• Modularity

• Extensibility

• Scalability

• Incremental Development

• Maintainability

• Use efficient, but readable code.

• Profile often.

Questions?

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 96

