Accounting for spatial structure in length-and-age-based stock assessment models: An example from South Australia

Jonathan Smart, John Feenstra and
Rick McGarvey
CAPAM - spatial structure workshop
$4^{\text {th }}$ October 2018

Outline

- King George Whiting (KGW) SA fishery
- Stock assessment model structure
- Slice partition formalism
- Movement submodel
- Stock Assessment outcomes
- Conclusions

Marine Scalefish Fishery (MSF)

- Multi-species, multi-gear, multi-area fishery
- Spans entire coastline of South Australia
- Stock assessments performed for three primary species:
- King George Whiting (Sillaginodes punctatus)
- Southern Garfish (Hyporhamphus melanchoir)
- Snapper (Chrysophrys auratus)

Marine Scalefish Fishery (MSF)

- Multi-species, multi-gear, multi-area fishery
- Spans entire coastline of South Australia

- Stock assessments performed for three primary species:
- King George Whiting (Sillaginodes punctatus)
- Southern Garfish (Hyporhamphus melanchoir)
- Snapper (Chrysophrys auratus)

King George Whiting (KGW) in South Australia

- Highest value fish by weight in South Australia
- Taken by several gear types:

1. Hand line
2. Haul net
3. Gill net

- Three spatial regions:

1. West Coast (WC)
2. Spencer Gulf (SG)
3. Gulf St Vincent (GSV)

- Managed by:
- Legal minimum size (region specific)
- Limited entry
- Gear restrictions
- Seasonal closures on spawning grounds

- Complex life history - ontogenetic migration

Stock Assessment Model

Model fits to:

- catch totals (kg)
- catch proportions-at-age-and-sex
- recreational survey data.
- Tag-recapture movement rates

Estimates key performance indicators for

 stock status :- Annual harvestable biomass

Recruitment is a free parameter - no stock recruitment relationship

- Annual harvest fraction
- Yearly recruitment.

Model structure

- Monthly time steps

- Effort conditioned
- Population numbers broken into:
- month
- region
- sex
- cohort
- length bin ('slice') within each cohort

Main reference: McGarvey R, Feenstra JE, Ye Q. 2007. Modeling fish numbers dynamically by age and length: partitioning cohorts into 'slices'. Canadian Journal of Fisheries and Aquatic Sciences 64: 11571173

Slice Partition Approach: How does it work?

- Within each cohort length is normally distributed
- At each time step, we compute the proportion of the cohort that grown above legal size
- These slice proportions are all we need to implement a length- and age-based model

- Better account for individuals lost through mortality and either lost or gained via movement

Slice Partition Approach: How does it work?

- Within each cohort length is normally distributed
- At each time step, we compute the proportion of the cohort that grown above legal size
- These slice proportions are all we need to implement a length- and age-based model

- Better account for individuals lost through mortality and either lost or gained via movement

Slice Partition Approach: How does it work?

- Within each cohort length is normally distributed
- At each time step, we compute the proportion of the cohort that grown above legal size
- These slice proportions are all we need to implement a length- and age-based model
- Better account for individuals lost through mortality and either lost or gained via movement

Slice Partition Approach: Advantages

- Differentiates between legal and sublegal fish in the model
- Models partial recruitment to the fishery as cohorts grow above LML
- Incorporates growth into model-predicted catch proportions-at-age
- Applied in South Australia to the 3 major fish stocks

Slice Partition Approach

- Applied to KGW as monthly time steps
- KGW have seasonally varying growth
- Incorporates this variability into the length-at-age pdf giving more precise slices

Slice Partition Approach

- Applied to KGW as monthly time steps
- KGW have seasonally varying growth
- Incorporates this variability into the length-at-age pdf giving more precise slices
- Provides narrower slices in slow-growing months when fewer fish recruit above LML

Age 37 months

Slice Partition Approach

- Applied to KGW as monthly time steps
- KGW have seasonally varying growth
- Incorporates this variability into the length-at-age pdf giving more precise slices
- Provides narrower slices in slow-growing months when fewer fish recruit above LML
- Fishing mortality is then applied to each slice in each time step
- The older the slice, the greater its exposure to fishing and therefore fewer individuals remain

Age 37 months

Movement Submodel

Three regions included in Stock Assessment West Coast (WC)
Gulf St Vincent (GSV)
Spencer Gulf (SG)
KGW undergo age-dependent migration from nursery areas to spawning grounds:

- GSV and SG KGW move south at $2-4$ years
- WC - KGW move offshore at 4 years to the "mystery cell"
- All movement occurs in summer (November January)

S A R D I

Spatial Distribution of Catches

Average monthly catch in each spatial cell 1984-2016

Catches vary both spatially and temporally

- Highest in winter (May - July)
- Highest in northern gulfs
- Failure to model movement will lead to under or overestimation of F in different areas

Mean monthly catch (t)
25
20
15
10
5

Movement Submodel

Tag and recapture data

- Movement is estimated and included as a likelihood component

Age Tagged (months)	Age Recaptured	Area Tagged	Area Recaptured
28	31	2	2
36	49	2	3
24	33	4	5

- Submodel is recapture conditioned
- Mortality in original cell (until time of movement), reporting rate, tag shedding rate all cancel out
- Key assumption is that reporting rate, tag mortality and tag loss are approximately uniform across areas
- Provides estimates of predicted movement proportions to each area
- Refines estimates of F and Z in the migration cells
$N=$ number of individuals, $t=$ month of tagging, $r=$ month of recapture, $a=$ age, $m=$ month of movement, $P=$ probability of movement, $S=$ survivorship, $F=$ fishing mortality, $Z=$ total mortality, $m_{\text {tag }}=$ tagging mortality, $f_{\text {report }}=$ tag report rate

Predicted n . recaptures

$$
\begin{array}{r}
\left.\widehat{N}_{i, j, a_{t}, a_{r}}^{r}=\frac{N t}{N V_{i, a_{t}}}\left(1-m_{t a g}\right) S_{i\left[\tilde{u}_{t}\right.}, a_{m}\right] P_{a_{m}, i j} S_{j}\left[a_{m}, a_{r}\right] \\
\times\left(1-e^{\left.-\frac{Z}{12}\right)\left(\frac{F_{j}}{Z_{j}}\right) f_{\text {roport }}}\right.
\end{array}
$$

Predicted prop recaptures

$$
\begin{aligned}
& f_{1}\left(j \mid i, a_{t}, a_{r}\right)=\frac{\widehat{N}_{i, j, a_{t}, a_{r}}^{r}}{\sum_{k=1}^{n_{c}} \widehat{N}_{i, k, a_{t}, a_{r}}^{r}} \\
& f\left(j \mid i, a_{r}\right)=\frac{P_{i j} e^{-Z_{j m} \frac{a_{r}-a_{m}}{12}}\left(1-e^{-\frac{z_{j m}}{12}}\right) \frac{F_{j m}}{Z_{j m}}}{\sum_{k=1}^{n_{c}} P_{i k} e^{-Z_{k m} \frac{a_{r}-a_{m}}{12}}\left(1-e^{-\frac{z_{k m}}{12}}\right) \frac{F_{k m}}{Z_{k m}}}
\end{aligned}
$$

Movement Submodel

Tag and recapture data

Age Tagged (months)	Age Recaptured	Area Tagged	Area Recaptured
28	31	2	2
36	49	2	3
24	33	4	5

- Submodel is recapture conditioned
- Mortality in original cell (until time of movement), reporting rate, tag shedding rate all cancel out
- Key assumption is that reporting rate, tag mortality and tag loss are approximately uniform across areas
- Provides estimates of predicted movement proportions to each area
- Refines estimates of F and Z in the migration cells

[^0]Annual time invariant movement matrix

$M C$	1	2	3	4	5
1	1.00	0.00	0.00	0.00	0.00
2	0.00	0.55	0.00	0.00	0.00
3	0.00	0.45	1.00	0.00	0.00
4	0.00	0.00	0.00	0.67	0.00
5	0.00	0.00	0.00	0.33	1.00

Smoothed monthly movement matrix

MC	1	2	3	4	5
1	1.00	0.00	0.00	0.00	0.00
2	0.00	0.82	0.00	0.00	0.00
3	0.00	0.18	1.00	0.00	0.00
4	0.00	0.00	0.00	0.87	0.00
5	0.00	0.00	0.00	0.13	1.00

Stock Assessment Outcomes

- Movement rates are smoothed across the 3 summer months for gradual emigration
- At age 4 , all remaining fish in northern Gulfs are moved.
- West Coast movement is not estimated as this only happens at age 4

Benefits of modelling movement and using slice partitions

Accounting for movement in tandem with slice partitions, refines the mortality estimates.

Account for movement

Stock Assessment outcomes

Increased precision in the population array provides:

- Precise fits to catch in all areas

Northern Spencer Gulf

Southern Gulf St. Vincent

Model time-step (Monthly)

NGSV Females
Aug 2016
Stock Assessment outcomes

Increased precision in the population array provides:

- Precise fits to catch in all areas
- Good fits to Age Comp. data
- Note older ages occur in SSG and SGSV compositions.

Stock Assessment outcomes

Increased precision in the population array provides:

- Precise fits to catch in all areas
- Good fits to Age Comp. data
- Note older ages occur in SSG and SGSV compositions.
- This leads to reasonable estimates of Biomass, harvest fraction and recruitment

Conclusions

- Accounting for movement in this example greatly avoids issues of overestimating and underestimating F, leading to improved model outputs.
- The slice partition approach complements the movement submodel as the age of movement is concurrent with ages that are fished the heaviest
- A recapture conditioned movement model provides a simple mechanism to include tag data in stock assessments and avoids issues regarding estimation of tag reporting (if assumptions are valid)

Acknowledgements

- Rick McGarvey and John Feenstra - the developers of this approach
- McGarvey R, Feenstra JE, Ye Q. 2007. Modeling fish numbers dynamically by age and length: partitioning cohorts into 'slices'. Canadian Journal of Fisheries and Aquatic Sciences 64: 11571173

- McGarvey, R., and J. E. Feenstra. 2002. Estimating rates of fish movement from tag recoveries: conditioning by recapture. Canadian Journal of Fisheries and Aquatic Sciences 59:10541064.
- The Marine Scalefish team - Mike Steer, Tony Fowler and all of their staff

S A R D I

WORLD FISHERIES CONGRESS

ADELAIDE•AUSTRALIA

11-15 OCTOBER 2020
wfc2020.com.au

Adelaide

[^0]: $N=$ number of individuals, $t=$ month of tagging, $r=$ month of recapture, $a=$ age, $m=$ month of movement, $P=$ probability of movement, $S=$ survivorship, $F=$ fishing mortality, $Z=$ total mortality, $m_{\text {tag }}=$ tagging mortality, $f_{\text {report }}=$ tag report rate

