Accounting for spatial structure in length-and-age-based stock assessment models: An example from South Australia

SOUTH AUSTRALIAN RESEARCH & DEVELOPMENT INSTITUTE **PIRSA**

Jonathan Smart, John Feenstra and Rick McGarvey

CAPAM – spatial structure workshop

4th October 2018

Primary Industries and Regions SA

Outline

- King George Whiting (KGW) SA fishery
- Stock assessment model structure
- Slice partition formalism
- Movement submodel
- Stock Assessment outcomes
- Conclusions

Marine Scalefish Fishery (MSF)

- Multi-species, multi-gear, multi-area fishery
- Spans entire coastline of South Australia
- Stock assessments performed for three primary species:
 - King George Whiting (*Sillaginodes punctatus*)
 - Southern Garfish (*Hyporhamphus melanchoir*)
 - Snapper (Chrysophrys auratus)

Marine Scalefish Fishery (MSF)

- Multi-species, multi-gear, multi-area fishery
- Spans entire coastline of South Australia
- Stock assessments performed for three primary species:
 - King George Whiting (Sillaginodes punctatus)
 - Southern Garfish (*Hyporhamphus melanchoir*)
 - Snapper (Chrysophrys auratus)

King George Whiting (KGW) in South Australia

- Highest value fish by weight in South Australia
- Taken by several gear types:
 - 1. Hand line
 - 2. Haul net
 - 3. Gill net
- Three spatial regions:
 - 1. West Coast (WC)
 - 2. Spencer Gulf (SG)
 - 3. Gulf St Vincent (GSV)
- Managed by:
 - Legal minimum size (region specific)
 - Limited entry
 - Gear restrictions
 - Seasonal closures on spawning grounds
- Complex life history ontogenetic migration

S A R D I

Stock Assessment Model

Model fits to:

- catch totals (kg)
- catch proportions-at-age-and-sex
- recreational survey data.
- Tag-recapture movement rates

Estimates key performance indicators for stock status :

- Annual harvestable biomass
- Annual harvest fraction
- Yearly recruitment.

Recruitment is a free parameter – no stock recruitment relationship

Model structure

- Monthly time steps
- Effort conditioned
- Population numbers broken into:
 - month
 - region
 - sex
 - cohort
 - length bin ('slice') within each cohort

Main reference: McGarvey R, Feenstra JE, Ye Q. 2007. Modeling fish numbers dynamically by age and length: partitioning cohorts into 'slices'. Canadian Journal of Fisheries and Aquatic Sciences 64: 1157-1173

Slice Partition Approach: How does it work?

- Within each cohort length is normally distributed
- At each time step, we compute the proportion of the cohort that grown above legal size
- These slice proportions are all we need to implement a length- and age-based model
- Better account for individuals lost through mortality and either lost or gained via movement

Slice Partition Approach: How does it work?

- Within each cohort length is normally distributed
- At each time step, we compute the proportion of the cohort that grown above legal size
- These slice proportions are all we need to implement a length- and age-based model
- Better account for individuals lost through mortality and either lost or gained via movement

Slice Partition Approach: How does it work?

- Within each cohort length is normally distributed
- At each time step, we compute the proportion of the cohort that grown above legal size
- These slice proportions are all we need to implement a length- and age-based model
- Better account for individuals lost through mortality and either lost or gained via movement

Slice Partition Approach: Advantages

• Differentiates between legal and sublegal fish in the model

- Models partial recruitment to the fishery as cohorts grow above LML
- Incorporates growth into model-predicted catch proportionsat-age
- Applied in South Australia to the 3 major fish stocks

Slice Partition Approach

- Applied to KGW as monthly time steps
 - KGW have seasonally varying growth
 - Incorporates this variability into the lengthat-age pdf giving more precise slices

S A R D I

Slice Partition Approach

- Applied to KGW as monthly time steps
 - KGW have seasonally varying growth
 - Incorporates this variability into the lengthat-age pdf giving more precise slices
- Provides narrower slices in slow-growing months when fewer fish recruit above LML

Slice Partition Approach

- Applied to KGW as monthly time steps
 - KGW have seasonally varying growth
 - Incorporates this variability into the lengthat-age pdf giving more precise slices
- Provides narrower slices in slow-growing months when fewer fish recruit above LML
- Fishing mortality is then applied to each slice in each time step
- The older the slice, the greater its exposure to fishing and therefore fewer individuals remain

Age 37 months owth e lengthces 0.015

S A R D I

Movement Submodel

Three regions included in Stock Assessment West Coast (WC) Gulf St Vincent (GSV) Spencer Gulf (SG)

KGW undergo age-dependent migration from nursery areas to spawning grounds:

- GSV and SG KGW move south at 2 4 years
- WC KGW move offshore at 4 years to the "mystery cell"
- All movement occurs in summer (November January)

S A R D I

Spatial Distribution of Catches

February March April January -32 --33 -34 -35 -36 Mean monthly May June July August catch (t) -32 25 Latitude -33 20 -34 15 -35 10 -36 5 September October November December -32 --33 -34 -35 -36 132 134 136 138|32 134 136 138132 134 136 13832 134 136 138 Longitude

Average monthly catch in each spatial cell 1984 - 2016

Catches vary both spatially and temporally

- Highest in winter (May July)
- Highest in northern gulfs
- Failure to model movement will lead to under or overestimation of F in different areas

Movement Submodel

- Movement is estimated and included as a likelihood component
- Submodel is recapture conditioned
 - Mortality in original cell (until time of movement), reporting rate, tag shedding rate all cancel out
 - Key assumption is that reporting rate, tag mortality and tag loss are approximately uniform across areas
- Provides estimates of predicted movement proportions to each area
- Refines estimates of *F* and *Z* in the migration cells

N = number of individuals, *t* =month of tagging, *r* = month of recapture, *a* = age, *m* = month of movement, *P* = probability of movement, *S* = survivorship, *F* = fishing mortality, *Z* = total mortality, m_{tag} = tagging mortality, f_{report} = tag report rate

Tag and recapture data

Age Tagged (months)	Age Recaptured	Area Tagged	Area Recaptured
28	31	2	2
36	49	2	3
24	33	4	5

Predicted n. recaptures
$$\begin{split} \widehat{N}_{i,j,a_t,a_r}^r &= \frac{N_{i,a_t}^t}{1 - m_{tag}} S_{\overline{t}} [a_t, a_m] P_{a_m,ij} S_j [a_m, a_r] \\ &\times \left(1 - e^{-\frac{Z}{12}}\right) \left(\frac{F_j}{Z_j}\right) f_{report} \end{split}$$

Predicted prop recaptures

$$f_{1}(j|i, a_{t}, a_{r}) = \frac{\widehat{N}_{i, j, a_{t}, a_{r}}^{r}}{\sum_{k=1}^{n_{c}} \widehat{N}_{i, k, a_{t}, a_{r}}^{r}}$$

$$f(j|i, a_{r}) = \frac{P_{ij}e^{-Z_{jm}\frac{a_{r}-a_{m}}{12}}(1-e^{-\frac{Z_{jm}}{12}})\frac{F_{jm}}{Z_{jm}}}{\sum_{k=1}^{n_{c}} P_{ik}e^{-Z_{km}\frac{a_{r}-a_{m}}{12}}(1-e^{-\frac{Z_{km}}{12}})\frac{F_{km}}{Z_{km}}}$$

Movement Submodel

- Movement is estimated and included as a likelihood component
- Submodel is recapture conditioned
 - Mortality in original cell (until time of movement), reporting rate, tag shedding rate all cancel out
 - Key assumption is that reporting rate, tag mortality and tag loss are approximately uniform across areas
- Provides estimates of predicted movement proportions to each area
- Refines estimates of *F* and *Z* in the migration cells

N = number of individuals, *t* =month of tagging, *r* = month of recapture, *a* = age, *m* = month of movement, *P* = probability of movement, *S* = survivorship, *F* = fishing mortality, *Z* = total mortality, m_{tag} = tagging mortality, f_{report} = tag report rate

Tag and recapture data

Age Tagged (months)	Age Recaptured	Area Tagged	Area Recaptured
28	31	2	2
36	49	2	3
24	33	4	5

Annual time invariant movement matrix

МС	1	2	3	4	5
1	1.00	0.00	0.00	0.00	0.00
2	0.00	0.55	0.00	0.00	0.00
3	0.00	0.45	1.00	0.00	0.00
4	0.00	0.00	0.00	0.67	0.00
5	0.00	0.00	0.00	0.33	1.00

Smoothed monthly movement matrix

МС	1	2	3	4	5
1	1.00	0.00	0.00	0.00	0.00
2	0.00	0.82	0.00	0.00	0.00
3	0.00	0.18	1.00	0.00	0.00
4	0.00	0.00	0.00	0.87	0.00
5	0.00	0.00	0.00	0.13	1.00

Stock Assessment Outcomes

- Movement rates are smoothed across the 3 summer months for gradual emigration
- At age 4, all remaining fish in northern Gulfs are moved.
- West Coast movement is not estimated as this only happens at age 4

S A R D I

Benefits of modelling movement and using slice partitions

Accounting for movement in tandem with slice partitions, refines the mortality estimates.

Stock Assessment outcomes

Increased precision in the population array provides:

• Precise fits to catch in all areas

Stock Assessment outcomes

Increased precision in the population array provides:

- Precise fits to catch in all areas
- Good fits to Age Comp. data
 - Note older ages occur in SSG and SGSV compositions.

Stock Assessment outcomes

Increased precision in the population array provides:

- Precise fits to catch in all areas
- Good fits to Age Comp. data
 - Note older ages occur in SSG and SGSV compositions.
- This leads to reasonable estimates of Biomass, harvest fraction and recruitment

Conclusions

- Accounting for movement in this example greatly avoids issues of overestimating and underestimating *F*, leading to improved model outputs.
- The slice partition approach complements the movement submodel as the age of movement is concurrent with ages that are fished the heaviest
- A recapture conditioned movement model provides a simple mechanism to include tag data in stock assessments and avoids issues regarding estimation of tag reporting (if assumptions are valid)

Acknowledgements

- Rick McGarvey and John Feenstra the developers of this approach
 - McGarvey R, Feenstra JE, Ye Q. 2007. Modeling fish numbers dynamically by age and length: partitioning cohorts into 'slices'. Canadian Journal of Fisheries and Aquatic Sciences 64: 1157-1173
 - McGarvey, R., and J. E. Feenstra. 2002. Estimating rates of fish movement from tag recoveries: conditioning by recapture. Canadian Journal of Fisheries and Aquatic Sciences 59:1054-1064.
- The Marine Scalefish team Mike Steer, Tony Fowler and all of their staff

WORLD FISHERIES CONGRESS Adelaide • Australia

11-15 October 2020

wfc2020.com.au

