

Integrating electronic tagging data

Rich Hillary, Paige Eveson \& Toby Patterson

Outline

- Most current packages offer spatially explicit options
- Estimation of movement usually via (conventional) tag data
- Several other forms of tag:
- archival (require recovery \& reporting)
- satellite (sends often detailed time/location data)
- acoustic (detections from an array of receivers)
- Increasing array of electronic tag data being collected
- How can we include e-tag data in integrated assessments?

What assessment processes can they inform?

- Archival:
- With reporting rates: mortality (F \& M)
- Migratory behaviour over time-at-liberty
- Satellite:
- Often detailed movement history
- If feasible to "condense" clear movement information
- Tag and natural mortality information
- Acoustic:
- Potentially information on total mortality ($F+M$)
- Does require estimation of observation probability
- With "spread" detection array movement information

Generic challenges

- Each data source would have different requirements
- Not feasible to do a single e-tag "module"
- Data "compression":
- Assessments (usually) spatiotemporally discrete
- Archival/satellite "tracks" need discretising
- Acoustic detections summarised at assessment scale
- Representation of uncertainty of "where" \& "when"
- Integrating suitable covariates for movement models

Case studies

- Southern bluefin tuna:
- Data: conventional/archival tags \& catches
- Parameters: M, F, seasonal movement \& abundance
- Scale: 2 seasons \& 4 regions
- South Pacific Striped Marlin:
- Data: conventional and satellite tagging data
- Parameters: movement only
- Scale: quarterly in time \& 2 regions

Movement model

- Most use spatial transition matrix: $\boldsymbol{\Phi}$
- With R regions is an $R \times R$ matrix
- Closed system so rows sum to 1 ($\sum_{i} \Phi_{i, j}=1$)
- For starting region r_{0} set $\mathbf{u}_{r_{0}}=1$, zero elsewhere
- Movement dynamics are simple:

$$
\mathbf{u}_{t}=\mathbf{u}_{t-1} \Phi
$$

- Now $\mathbf{u}_{t}=\mathbb{P}\left(r_{t} \mid r_{0}\right)$
- This will form basis for likelihoods for all e-tag data

Movement likelihood structure

- This will vary depending on type of tag
- "Simplest" case is satellite tag
- General idea:
- Have n_{e} individual tag histories $r_{t, i}$
- Time sequence of regions, $r_{t, i}$, for tag i
- Likelihood product of probabilities of sequence of locations:

$$
\Lambda^{e}=\prod_{i=1}^{n_{e}} \prod_{j=1}^{T_{i}} \mathbb{P}\left(r_{t_{j}, i} \mid r_{t_{j-1, i}}\right)
$$

- Conditional bit accounts for "track" history
- Wrinkle: it won't always be definitive "where" tag was...

Dealing with uncertainty of region in time

- For many cases, $r_{t, i}$ is going to be uncertain
- Fine-scale dynamics \& imprecision of location key factors
- Tag imprecision: filtering algorithms can quantify uncertainty
- Fine-scale dynamics: again, uncertainty can be quantified
- Goal: combine to generate probability of region in time, $\pi_{t, i, r}$
- Integrate across this in modified likelihood:

$$
\Lambda^{e}=\prod_{i=1}^{n_{e}} \prod_{j=1}^{T_{i}}\left(\sum_{k=1}^{R} \sum_{l=1}^{R} \mathbb{P}\left(k_{t_{j}, i} \mid l_{t_{j-1}, i}\right) \mathbb{P}\left(l_{t_{j-1}, i}\right) \pi_{t_{j}, i, k}\right)
$$

- Efficient to recast as a Hidden Markov Model (HMM)

Archival and acoustic modifications

- Archival tags (with reporting rates):
- Include survival and recapture probabilities
- Survival included between position observations
- Recapture/reporting probability at point of capture
- Likelihood: spatial Brownie with track history bit
- Acoustic tags:
- Needs survival and observation probabilities
- Survival included between position observations
- Observation probability at each position observation
- Efficient to cast as an HMM
- Observations: alive \& detected in given region

Southern bluefin tuna

- Focus on simulation study exploring utility of archival tags ${ }^{1}$
- Data sources:

1. Conventional tags
2. Archival tags
3. Catch-at-age

- Main questions:

1. Do we need archivals to estimate M, F and Φ ?
2. How do the data sources inform the different parameters?

SBT spatiotemporal structure

- Conventional tags (left) \& spatiotemporal structure (right):

Data scenarios \& CV of key parameters

- CV estimates for movement (left) \& M (right):

Data scenarios \& CV of key parameters

- CV estimates for F :

SBT case study summary

- Clearly archival tags can be informative
- Hard to estimate $M, F \& \Phi$ without them
- Especially when releases are not spatially homogeneous
- Archivals are key to separating movement from mortality

South Pacific Striped Marlin

- Question: quarterly movement probability across 165E
- Spatial structure of the model:

Striped Marlin PSAT tracks (73 fish)

Striped Marlin Data

- PSATs:
- 2 AU releases, 19 NZ releases 90+ days-at-liberty
- 0 AU rel. go W $\rightarrow \mathrm{E}$; ca. 30% NZ rel. cross $\mathrm{E} \rightarrow \mathrm{W}$ boundary
- Conventional tags:
- As with PSATs 90+ days-at-liberty (max. 4 years)
- Use recaptures only (forget about M, F, shedding etc.)
- Likelihood same as PSAT with 1 obs. post release
- Minor tweak for relative rep./recap. rate by region

Release Area	Region 1	Region 2
Recapture Area		
Region 1	61	10
Region 2	0	16

Striped Marlin estimates

- Credible intervals (95\%) for movement parameters:

1. $\mathrm{W} \rightarrow \mathrm{E}\left(\Phi_{1,2}\right): 0.001(0-0.004)$
2. $\mathrm{E} \rightarrow \mathrm{W}\left(\Phi_{2,1}\right): 0.14$ (0.09-0.21)

- Predictive intervals for conventional tags:

Summary

- No technical impediment to including e-tag data
- Some obvious possible groupings:

1. Archival tags with reporting rates
2. Satellite and archival (without reporting rates) tags
3. Acoustic tags

- Likelihood ingredients already in spatial models
- Obviously not immune to "wacky" dynamics or field work choices
- SBT example: conventional/archivals disentangle $M, F \& \Phi$
- STM example: conventional/PSAT make Φ estimable

Thank You

CSIRO Oceans \& Atmosphere

Rich Hillary
t +61 362325452
e Rich.Hillary@csiro.au
w CSIRO O \& A website

