

Integrating electronic tagging data

Rich Hillary, Paige Eveson & Toby Patterson

OCEANS & ATMOSPHERE www.csiro.au

Outline

- Most current packages offer spatially explicit options
- Estimation of movement *usually* via (conventional) tag data
- Several other forms of tag:
 - archival (require recovery & reporting)
 - satellite (sends often detailed time/location data)
 - acoustic (detections from an array of receivers)
- Increasing array of electronic tag data being collected
- How can we include e-tag data in integrated assessments?

What assessment processes can they inform?

- Archival:
 - With reporting rates: mortality (F & M)
 - Migratory behaviour over time-at-liberty
- Satellite:
 - Often detailed movement history
 - If feasible to "condense" clear movement information
 - Tag and natural mortality information
- Acoustic:
 - Potentially information on total mortality (F + M)
 - Does require estimation of observation probability
 - With "spread" detection array movement information

Generic challenges

- Each data source would have different requirements
- Not feasible to do a single e-tag "module"
- Data "compression":
 - Assessments (usually) spatiotemporally discrete
 - Archival/satellite "tracks" need discretising
 - Acoustic detections summarised at assessment scale
- Representation of uncertainty of "where" & "when"
- Integrating suitable covariates for movement models

Case studies

Southern bluefin tuna:

- Data: conventional/archival tags & catches
- Parameters: M, F, seasonal movement & abundance
- Scale: 2 seasons & 4 regions
- South Pacific Striped Marlin:
 - Data: conventional and satellite tagging data
 - Parameters: movement only
 - Scale: quarterly in time & 2 regions

Movement model

- Most use spatial transition matrix: ${f \Phi}$
- With R regions is an $R \times R$ matrix
- Closed system so rows sum to 1 ($\sum_i \Phi_{i,j} = 1$)
- For starting region r_0 set $\mathbf{u}_{r_0} = 1$, zero elsewhere
- Movement dynamics are simple:

$$\mathbf{u}_t = \mathbf{u}_{t-1} \mathbf{\Phi}$$

- Now $\mathbf{u}_t = \mathbb{P}\left(r_t \,|\, r_0\right)$
- This will form basis for likelihoods for all e-tag data

Movement likelihood structure

- This will vary depending on type of tag
- "Simplest" case is satellite tag
- General idea:
 - Have n_e individual tag histories $r_{t,i}$
 - Time sequence of regions, $r_{t,i}$, for tag i
- Likelihood product of probabilities of sequence of locations:

$$\Lambda^{e} = \prod_{i=1}^{n_{e}} \prod_{j=1}^{T_{i}} \mathbb{P}\left(r_{t_{j},i} \mid r_{t_{j-1},i}\right)$$

- Conditional bit accounts for "track" history
- Wrinkle: it won't always be definitive "where" tag was...

Dealing with uncertainty of region in time

- For many cases, $r_{t,i}$ is going to be uncertain
- Fine-scale dynamics & imprecision of location key factors
- Tag imprecision: filtering algorithms can quantify uncertainty
- Fine-scale dynamics: again, uncertainty can be quantified
- Goal: combine to generate probability of region in time, $\pi_{t,i,r}$
- Integrate across this in modified likelihood:

$$\Lambda^{e} = \prod_{i=1}^{n_{e}} \prod_{j=1}^{T_{i}} \left(\sum_{k=1}^{R} \sum_{l=1}^{R} \mathbb{P}\left(k_{t_{j},i} \mid l_{t_{j-1},i} \right) \mathbb{P}\left(l_{t_{j-1},i} \right) \pi_{t_{j},i,k} \right)$$

• Efficient to recast as a Hidden Markov Model (HMM)

Archival and acoustic modifications

- Archival tags (with reporting rates):
 - Include survival and recapture probabilities
 - Survival included between position observations
 - Recapture/reporting probability at point of capture
 - Likelihood: spatial Brownie with track history bit
- Acoustic tags:
 - Needs survival and observation probabilities
 - Survival included between position observations
 - Observation probability at each position observation
 - Efficient to cast as an HMM
 - Observations: alive & detected in given region

Southern bluefin tuna

- Focus on simulation study exploring utility of archival tags¹
- Data sources:
 - 1. Conventional tags
 - 2. Archival tags
 - 3. Catch-at-age
- Main questions:
 - 1. Do we need archivals to estimate M, F and Φ ?
 - 2. How do the data sources inform the different parameters?

¹ Eveson, J. P., Basson, M., and Hobday, A. J. (2012) Using electronic tag data to improve mortality and movement estimates in a tag-based spatial fisheries assessment model. *CJFAS*, 69:1–15

Integrating e-tag data: Slide 10 of 20

SBT spatiotemporal structure

• Conventional tags (left) & spatiotemporal structure (right):

Integrating e-tag data: Slide 11 of 20

Data scenarios & CV of key parameters

• CV estimates for movement (left) & M (right):

Integrating e-tag data: Slide 12 of 20

Data scenarios & CV of key parameters

• CV estimates for *F*:

Integrating e-tag data: Slide 13 of 20

SBT case study summary

- Clearly archival tags *can* be informative
- Hard to estimate M, F & Φ without them
- Especially when releases are not spatially homogeneous
- Archivals are key to separating movement from mortality

South Pacific Striped Marlin

- Question: quarterly movement probability across 165E
- Spatial structure of the model:

Integrating e-tag data: Slide 15 of 20

Striped Marlin PSAT tracks (73 fish)

Integrating e-tag data: Slide 16 of 20

Striped Marlin Data

- PSATs:
 - 2 AU releases, 19 NZ releases 90+ days-at-liberty
 - 0 AU rel. go W \rightarrow E; *ca.* 30% NZ rel. cross E \rightarrow W boundary
- Conventional tags:
 - As with PSATs 90+ days-at-liberty (max. 4 years)
 - Use recaptures **only** (forget about M, F, shedding etc.)
 - Likelihood same as PSAT with 1 obs. post release
 - Minor tweak for relative rep./recap. rate by region

Release Area	Region 1	Region 2
Recapture Area		
Region 1	61	10
Region 2	0	16

Striped Marlin estimates

- Credible intervals (95%) for movement parameters:
 - 1. W→E (Φ_{1,2}): 0.001 (0−0.004)
 - 2. $E \rightarrow W$ ($\Phi_{2,1}$): 0.14 (0.09–0.21)
- Predictive intervals for conventional tags:

Integrating e-tag data: Slide 18 of 20

Summary

- No technical impediment to including e-tag data
- Some obvious possible groupings:
 - 1. Archival tags with reporting rates
 - 2. Satellite and archival (without reporting rates) tags

3. Acoustic tags

- Likelihood ingredients already in spatial models
- Obviously not immune to "wacky" dynamics or field work choices
- SBT example: conventional/archivals disentangle M, F & $\mathbf{\Phi}$
- STM example: conventional/PSAT make Φ estimable

Thank You

CSIRO Oceans & Atmosphere

Rich Hillary

- t +61 3 6232 5452
- e Rich.Hillary@csiro.au
- w CSIRO O & A website

OCEANS & ATMOSPHERE www.csiro.au

