Simulation testing stock assessments of spatially-structured Atlantic bluefin tuna stocks

Molly R. Morse, Lisa A. Kerr, Steven X. Cadrin

Spatial Stock Assessment Models CAPAM Spatial Stock Assessment Workshop I-5 October 2018

Acknowledgements

Contributors

Gavin Fay, Ben Galuardi, Clay Porch, Matt Lauretta, John Walter, J.-J. Maguire, Tristan Rouyer, Ai Kimoto, Dave Secor, ICCAT Bluefin Tuna Working Group

Research Funding

NOAA Bluefin Tuna Research Program

Atlantic Bluefin Tuna VPA Model Training ICCAT

Outline

I. Introduction

What we know about Atlantic bluefin tuna stock mixing

Assumptions of the current stock assessment and management paradigm

2. Methods

How the operating model simulates mixed Atlantic bluefin tuna stocks How the operating model and estimation models differ structurally

3. Results

Operating model representation of the known system Performance of estimation models

4. Discussion

Why the estimation models performed the way they did What this means for Atlantic bluefin tuna management

What we know about Atlantic bluefin tuna stock mixing

- Highly-migratory species
- 2 populations: west and east
- Spawning site fidelity
 - Western population: Gulf of Mexico (& Slope Sea?)

 \odot Eastern population: Mediterranean Sea

• Mixing of populations in North Atlantic feeding grounds (fall)

 \odot Varies across space, time, and demographic

groups

The current stock assessment and management paradigm

Methods

Results

- Two-stock management since 1980s
- Separate stock assessments using age-based models (VPA, SS)

Intro

 Assume closed unit stocks (negligible mixing)

Discussion

The current stock assessment and management paradigm

Actual

6

Model assumptions

Research Question

How does model misspecification of spatial structure and mixing dynamics affect stock assessment results of Atlantic bluefin tuna?

Discussion

7

Simulation testing

simulation

OPERATING MODEL

evaluation

evaluation

Operating model (adapted from Kerr et al. 2018)

Intro

Methods

Structure

- 2 populations (west & east)
- 29 age classes
- 7 geographic zones
- 4 seasonal quarters
- 1974 to 2015
- Overlap movement

Conditioning

- Time-constant movement matrices based on telemetry data (Galuardi et al. 2018)
- Recruitment, fishing mortality, selectivity, catchability parameters from 2017 stock assessment

Discussion

Results

Q

Intro

Methods

Results

Discussion

Observation model

Catch-at-age
$$C_{y,a,s} = \left(\sum_{\substack{West \ z=1:3\\East \ z=4:7}} \sum_{q=1}^{4} \sum_{p=1}^{2} N_{y,a,z,q,p} \frac{F_{y,a,z,q}}{F_{y,a,z,q} + M_{a,q,p}} \left[1 - e^{-(F_{y,a,z,q} + M_{a,q,p})}\right]\right) e^{\varepsilon_{y,a,s}}$$

Indices of relative abundance

Observation error

where

$$I_{y,g} = \left(\sum_{\substack{West \ z=1:3\\East \ z=4:7}} \sum_{a=1}^{29} \sum_{p=1}^{2} S_{a,g} N_{y,a,z,q,p} W_{a,p} Q_g\right) e^{\varepsilon_{y,g}}$$

Relative age
composition of
$$P_{y,a,g,s} = \left(\sum_{\substack{West \ z=1:3\\East \ z=4:7}} \sum_{q=1}^{4} \sum_{p=1}^{2} N_{y,a,z,q,p} \frac{E_{y,g}Q_gS_{a,g}}{E_{y,g}Q_gS_{a,g} + M_{a,q,p}} \left[1 - e^{-(E_{y,g}Q_gS_{a,g} + M_{a,q,p})}\right]\right) e^{\varepsilon_{y,a,s}}$$

indices

$$\varepsilon \sim N(0, \sigma^2)$$

$$\varepsilon \sim N(0, \sigma^2)$$

$$\sigma = \sqrt{\frac{1}{Y}} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

$$\int \frac{1}{Y} \frac{1}{A} \sum_{y}^{Y} \sum_{a}^{A} [\ln x_i - \ln \hat{x}_i]^2$$

Estimation model

- VPA-2BOX (Porch 2003, Porch et al. 2001)
- Single stock calibrated VPA
- Same model configuration as 2017 benchmark stock assessment

Program VPA-2BOX.F90, Version 4.01 (April 15, 2017)

A virtual population analysis tool that uses catch-at-age, indices of abundance, indices of mortality rates, and tag-recoveries to estimate the abundance and mortality of one or two (intermixing) populations.

based on the methods of

Porch, C. E., Turner, S. C., and Powers, J. E. 2001 Virtual population analyses of Atlantic bluefin tuna with alternative models of transatlantic migration: 1970-1997. Int. Comm. Conserv. Atl. Tunas, Coll. Vol. Sci. Pap. 52: 1022-1045

programmed by Clay E. Porch NOAA Fisheries 75 Virginia Beach Drive Miami, Fl 33149 (USA)

ENTER THE NAME OF THE CONTROL FILE:

NOAA Technical Memorandum NMFS-SEFSC-x

VPA-2BOX 4.01

User Guide

ΒY

Clay E. Porch

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149

March 2017

Intro

Methods

$F_{0.1}$ reference point

- *F*_{0.1} calculated using partial recruitment *P*_a from operating model and estimation models
- Compared to $F_{current}$ (2012-2014) of reference ages (ages where $P_a \ge 0.8$)

 $\frac{F_{current}}{F_{0.\,I}}$

- > I = overfishing occurring
- < I = overfishing NOT occurring

Pew Charitable Trusts, Cooper 2006

Intro	Methods	Results	$\overline{}$	Discussion	
Incro	T ICCIIOUS	Results		Discussion	

Operating model: Recruitment

Operating model: Spawning stock biomass

Operating model: Population mixing

Intro Methods Results Discussion

Estimation model: Convergence challenges

- Poor parameter estimation:
 - terminal F (west)
 - o index variance scaling parameters (east)
- Similar problems as ICCAT Bluefin Tuna Working Group (Zarrad et al. 2018)
- Tested revised estimation model configurations

Stock	Estimation Model Configuration	Convergence Rate
\\/ost	ICCAT 2017	6%
vvest	Revised	81%
Fact	ICCAT 2017	95%
East	Revised	96%

_				 	
	Intro	>	Methods	Results	> Discussion

Estimation model performance: Recruitment

Estimation model performance: Spawning stock biomass

Eastern estimation model: Self-test

- Modification of operating model to eliminate spatial structure, seasonal structure, and fish movement for a "self-test" (Deroba et al. 2015)
- Percent relative estimation bias:

 Recruitment: 60%
 SSB: -30%
- Revealed additional limitations of VPA-2BOX

 Poor estimation of terminal F for youngest ages
 Supports previous findings on model instability

Operating Model

(Zarrad et a. 2018)

Estimation model performance: F/F_{0}

- Correctly identified stock status (overfishing not occurring) for
 - 94% of realizations in west

Intro

- \circ 85% of realizations in east
- Median fell between the population and stock view true values

Estimation model performance: *F*/*F*_{0.1}

- Problems with using F to evaluate model performance
 - Poor estimation of index selectivities-at-age
 - Apical F and age-averaged F incomparable between OM and EM

Intro

• Alleviated with ratio $F_{current}/F_{0.1}$ \odot Same perception of selectivity in $F_{current}$ and $F_{0.1}$

Key findings

"Only the most naïve stock assessment biologist would actually believe he [or she] ever correctly specifies a model."

> -Hilborn and Walters (1992), modified by M. Morse

Misspecification in **spatial structure** of operating and estimation models produces **structural error**, resulting in

Resilience:

underestimation of eastern population size may protect it from overfishing, but limit maximum sustainable exploitation

Vulnerability:

overestimation of western population size may increase risk of overfishing

Intro Methods Results Discussion

Management implications

The VPA captures the stock size and stock status better than the population size

- Effective for understanding current and shortterm trends in the resource available to fisheries (e.g., setting near-term quotas)
- Effective for understanding current overfishing status based on F/F_{0.1} ratio
- Ineffective for long-term projections, rebuilding, or population conservation (requires accurate estimates of production)

Results

Methods

Discussion

Next Steps

- Testing additional reference points $(F_{max}, SSB_{Fmax}, F_{30\%}, SSB_{F30\%}, etc.)$
- Management Strategy Evaluation (MSE)
 - Stakeholder input on defining management procedures
- Continued development of stock assessment models that explicitly incorporate mixing data

Thank you! Questions? Comments?

Molly R. Morse mmorse1@umassd.edu @mollyseamorse Linkedin.com/in/mollyrmorse

Appendix

Deterministic/Stochastic divergence in eastern SSB estimates

- Divergence observed at older abundance-at-age and SSB in the eastern stock
- Large standard deviation = 0.86, large scale of eastern catch data
- Lack of identifiability in the VPA

Deterministic

Stochastic

Deterministic/Stochastic divergence in eastern SSB estimates

- Testing effect of large sigma:
 - \circ Eastern F-ratio values estimated at four levels of standard deviation ($\sigma = 0, 0.3, 0.6, 0.86$) for the observation error term on the catch-at-age pseudodata.
 - $_{\odot}$ Higher σ \rightarrow higher average F-ratios and greater occurrence of extreme values

 \rightarrow higher F on plus group and lower SSB

Testing additional reference points (preliminary)

Reference point values from the operating model (population and stock views) and estimation models (geometric mean across realizations).

Population/Stock	Reference Point	Operating Model Population view	Operating Model Stock view	Estimation Model
West	F _{0.1}	0.11	0.11	0.17
East	F _{0.1}	0.16	0.11	0.38
West	SSB _{0.1}	18,681	19,424	42,954
East	SSB _{0.1}	491,413	528,324	80,017
West	F _{30%}	0.12	0.12	0.19
East	F _{30%}	0.21	0.15	0.40
West	F _{40%}	0.09	0.09	0.15
East	F _{40%}	0.15	0.11	0.30
West	F _{max}	0.17	0.18	0.26
East	F _{max}	0.24	0.16	0.59
West	SSB _{Fmax}	11,308	11,227	33,027
East	SSB _{Fmax}	330,141	348,093	53,339