



# **Stock Synthesis (SS) New Spatial Features**

Richard D. Methot Jr. Senior Scientist for Stock Assessments NOAA Fisheries Seattle, WA

# Wish List

- Area-specific spawner-recruitment
- Area-specific M
- Area-specific growth



## **Status Quo – Spawner-Recruitment**

- SSB by area is calculated and reported, but not used
- Global SSB produces global recruits
- Global recruits are partitioned among:
  - Sex and growth morphs
  - Settlement events (in year timing)
  - Areas
- Partitioning can be time-varying
  - Time-vary can be density-dependent
- BUT! Equilibrium calcs conditioned on a particular, non-dynamic partitioning



## The Challenge: equilibrium per recruit calcs

- for (a=0;a<=3\*nages;a++)</li>
  - for (s=1;s<=nseas;s++)</li>
    - for (g=1;g<=gmorph;g++)</li>
      - for (p=1;p<=pop;p++)
        - If a,s,g,p meet conditions, insert Numbers to N@Age matrix using partition
        - Apply M and F
    - }}
    - Do hermaphroditism
    - Do movement
- }}
- Accumulate SSB by area and catch by fleet

- SSB in an area can depend on F in other areas
- So partition cannot include a local SRR condition
- Solution: Iterate so SSB by area from previous iteration can be used in partition
- Code challenges?: minimal to do this loop; messy to create user I/O options for local vs global SRR



#### **Natural Mortality**

- M is stored as: natM(seas,sex-morph,age)
- No logical contradictions to area-specific M
- Easiest internal solution would be to extend sexmorph index to be sex-morph-area
- I/O options:
  - Make morph and area mutually exclusive
  - Bloat I/O with full input of all sex-morph-areas
  - Change to a design matrix approach (see later)



#### Growth

- Growth parms stored by: sex-morph
- Wt@age stored by: seas, sex-morph
- As fish move between areas, they retain morph identity, so retain size at age



# **Growth by Area Possibility**

- Growth parms stored by: sex-area
- Wt@age stored by: seas, sex-area
- As fish move between areas, they combine with fish in destination area, so size-at-age by area will be weighted average of moving and staying fish
  - Will cause slow execution due to constant recalc of ALK and age-selectivity
- Gross approximation: keep size-at-age constant over time, so moving fish instantly assume size-at-age in destination area



## **Design Matrix**

|                                          |     |      |   |      |      |   | etc. for all              |                                                      |           |            |           |           |          |  |
|------------------------------------------|-----|------|---|------|------|---|---------------------------|------------------------------------------------------|-----------|------------|-----------|-----------|----------|--|
| Morph                                    | Sex | Area | Μ | Lmin | Lmax | K | Mgparms                   | comment                                              |           |            |           |           |          |  |
| 1                                        | 1   | 1    | 1 | 1    | 1    | 1 | 1                         | first entity always uses the first set of parameters |           |            |           |           |          |  |
| 1                                        | 2   | 1    | 1 | 1    | 1    | 2 | 1                         | males have unique K, rest same as first set          |           |            |           |           |          |  |
| 1                                        | 1   | 1    | 1 | 1    | 2    | 1 | 1                         | females in area 2 have different Lmax                |           |            |           |           |          |  |
| 1                                        | 2   | 1    | 1 | 1    | 3.2  | 2 | 1                         | males in area 2 are offset from females              |           |            |           |           |          |  |
| -9999                                    |     |      |   |      |      |   |                           | end of list; all u                                   | nlisted e | entities u | use first | set of pa | rameters |  |
| List of needed parameters: int(max(colum |     |      |   |      |      |   |                           |                                                      |           |            |           |           |          |  |
| Μ                                        |     |      |   |      |      |   | dicates number            |                                                      |           |            |           |           |          |  |
| Lmin                                     |     |      |   |      |      |   | parameters of<br>that are |                                                      |           |            |           |           |          |  |
| Lmax(1)                                  |     |      |   |      |      |   | eded                      |                                                      |           |            |           |           |          |  |
| Lmax(2)                                  |     |      |   |      |      |   |                           |                                                      |           |            |           |           |          |  |
| Lmax(3)-offset from Lmax(2)              |     |      |   |      |      |   |                           |                                                      |           |            |           |           |          |  |
| К(1)                                     |     |      |   |      |      |   |                           |                                                      |           |            |           |           |          |  |
| К(2)                                     |     |      |   |      |      |   |                           |                                                      |           |            |           |           |          |  |
| etc.                                     |     |      |   |      |      |   |                           |                                                      |           |            |           |           |          |  |
|                                          |     |      |   |      |      | - |                           |                                                      |           |            |           |           |          |  |

