Modelling partitions using MULTIFAN-CL

- space, tagged populations, species, stocks, and gender
- coding implementation and recommendations

Nick Davies, Dave Fournier, John Hampton

Outline

- Introduction to MULTIFAN-CL
- Partitioning:
- Space
- Tagging
- Species/Stocks/Sexes
- Software development and testing
- Improvements possible and development recommendations

1. Introduction to MULTIFAN-CL

What is MULTIFAN-CL?

- An integrated age-structured, length-based population model
- Integrated - integrates the fit over multiple data types
- Age-structured - core population state is dimensioned by age
- Length-based because it is conditioned on:
- size composition
- tag recaptures at length

Particularly useful for tropical species for which age-specific data is generally unavailable

Brief history

- First MULTIFAN - estimated growth from cohort LF
- Placed into an age-structured model that fitted to catch-at-length data, SPARCLE (South Pacific Albacore Research Catch-at-Length Estimators) in 1993
- MULTIFAN-CL was introduced in CJFAS in 1998; followed by the YFT assessment in 2001; simulation tested in 2005
- Used in WCPO stock assessments for nearly 20 years

[^0]Hampton, J., and D.A. Fournier. 2001. A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Mar. Fresh. Res., 52:937-963.

Labelle, M. 2005. Testing the MULTIFAN-CL assessment model using simulated tuna fisheries data. Fisheries Research 03/2005; DOI: 10.1016/j.fishres.2004.08.035

Team

- Primary developer - Dave Fournier
- Development support and testing - Nick Davies
- Direction - John Hampton and Graham Pilling
- Software support (Viewer, Repository) - Fabrice Bouyé

License: Oceanic Fisheries Programme, Pacific Community, (SPC) and Otter Research Ltd

Overview of the code project

- C++
- 250 source files
- Dependent libraries:
- ADMB - data structures and auto-diff; in-house version
- OpenBLAS - matrix routines
- QD - precision
- PVM3 - multi-threading
- Generic - using input flags (5 types) act as "switches" to control:
- Program operation, processes, likelihoods and parameterisations
- Fitting procedure
- Simulation projections
- Reporting
- Website: www.multifan-cl.org - for binaries and documentation

2. Space partition

Rationale:

- to explicitly describe spatial processes that lead to heterogeneity within the fish stock
- to account for heterogeneity in fleet structure or management measures

In summary - to explicitly describe the variable effects of fishing mortality on the stock by area

Spatial complexity in WCPO

Heterogeneity:

- fisheries
- biology

Space partition

- Region is the basis dimension of the population data structure

$$
\mathrm{N}(1, \text { nregions, } 1, \text { nyrs, } 1, \text { nage })
$$

- Region: a subset within the stock unit in which the subpopulation within a time period is discrete from other subsets
- Movement among regions is possible.

Movement parameterisation

- Temporal:
- Flexibility for number of movements per year (e.g. each quarter)
- Flexibility for grouping (shared) movements for particular time periods, e.g. 1221 rather than 1234
- Spatial:
- coefficients estimated are region boundaryspecific, so flexibility for:
- number of regions
- adjacent regions

Movement processes in MULTIFAN-CL cont.

Movement matrix in respect of regions
e.g. yellowfin tuna

- Flexibilty in respect of the vectors of movement coefficients in respect of: spatial structure, temporal assumptions

Movement processes cont.

- movement occurs at start of each t
- region-specific coefficients $\boldsymbol{v}_{\boldsymbol{a}}^{r s}$ from region r to region s
- abundance after movement is

$$
N_{a t r}=N_{a t r}^{\prime}-\left(\sum_{s \neq r} v_{a}^{r s}\right) N_{a t r}+\sum_{s \neq r} v_{a}^{s r} N_{a t s}
$$

$\boldsymbol{N}^{\prime}{ }_{\text {atr }}$ and $\boldsymbol{N}_{\text {atr }}$ are pre- and post-movement

Movement processes cont.

- Fully implicit solution \rightarrow movement can occur to all regions (including non-adjacent) in a single time step
- guarantees numerical stability

$$
\begin{gathered}
\mathbf{N}_{\mathbf{a t}}=\mathbf{B}_{\mathbf{a}}^{-1} \cdot \mathbf{N}_{\mathbf{a t}}^{\prime} ; \\
\mathbf{B}_{\mathbf{a}}=\left[\begin{array}{ccccccc}
1+v_{a}^{12}+v_{a}^{13}+v_{a}^{14} & -v_{a}^{21} & -v_{a}^{31} & -v_{a}^{41} & 0 & 0 & 0 \\
-v_{a}^{12} & 1+v_{a}^{21}+v_{a}^{25} & 0 & 0 & -v_{a}^{52} & 0 & 0 \\
-v_{a}^{3} & 0 & 1+v_{a}^{31}+v_{a}^{34} & -v_{a}^{43} & 0 & 0 & 0 \\
-v_{a}^{14} & 0 & -v_{a}^{34} & 1+v_{a}^{41}+v_{a}^{43}++_{a}^{45}+v_{a}^{46} & -v_{a}^{54} & -v_{a}^{64} & 0 \\
0 & -v_{a}^{25} & 0 & -v_{a}^{45} & 1+v_{a}^{52}+v_{a}^{54}+v_{a}^{57} & 0 & -v_{a}^{75} \\
0 & 0 & 0 & -v_{a}^{46} & 0 & 1+v_{a}^{64}+v_{a}^{67} & -v_{a}^{76} \\
0 & 0 & 0 & 0 & -v_{a}^{57} & -v_{a}^{67} & 1+v_{a}^{75}+v_{a}^{76}
\end{array}\right]
\end{gathered}
$$

Movement processes cont.

- Options for age dependency of the movement coefficients:

$$
v_{a}^{r s}=\phi_{0}^{r s} \exp \left(\phi_{1}^{r s}\left(\kappa_{\mathrm{a}}\right)^{r s}\right)
$$

- linear-dependence $\phi_{1}^{r s}$
- non-linear-dependence $\phi_{2}^{r s}$

Example: Bigeye tuna selected regions only nregions $=9$
 n_coffs = 26
 4 movement time periods

Region 1

Region 4

3. Tag partition

Tagged population model

- Each release event represents a "parallel" tagged population
tagnum_fish(1,tag_events,1,nregions,1,nperiods, 1,nage)
- shares most of the dynamic processes with the model (un-tagged) population
- Identical movement and growth processes
- The exception process is recruitment: where for the tagged population a "cohort" is a release event comprising a "recruitment" in numbers at length

Tagged population model

- MULTIFAN-CL is age-structured. Tag releases are length-specific - transformed to be age-specific via the estimated growth function
- A mixing period is specified for assumed random mixing of tagged population
- Grouping of recaptures: specified fisheries for which recaptures can be aggregated

Tag population dynamics -post-release

- Mixing phase of specified time periods
- not included in likelihood
- Mixing phase fishing mortality = corrected tag returns during period

$$
\operatorname{fn}_{3}\left(R_{c t f}^{\mathrm{Tobs}}, X_{t f}\right) ; \quad t_{c}^{\mathrm{rel}} \leq t<t_{c}^{\mathrm{rel}}+n^{\text {mix }}
$$

- Fishing mortality on tag cohort (post-mix)

$$
F_{a(c, t), t, f} ; \quad t \geq t_{c}^{\mathrm{rel}}+n^{\operatorname{mix}}
$$

Tag population dynamics - release

- Tags released are assigned to a tag cohort (c) - being a tag release group
- Pooled group - aggregate cohorts (c*) from tag groups in a single group when attain $a^{\text {pool }}$. Age structure is maintained

Tag cohorts - releases

Tag group X

$$
N_{c}^{\mathrm{rel}} \quad N_{c, t-1, r}^{\mathrm{T}} e^{-Z_{c, t-1, r}^{\mathrm{T}}}
$$

$$
Z_{c t r}^{\mathrm{T}}=\sum_{f \in f_{r}} F_{c t f}^{\mathrm{T}}+M_{a(c, t)}
$$

Region 1

Predicted tag recaptures

- Fishery specific reporting rate $\boldsymbol{X}_{t \boldsymbol{t}}$

Predicted recoveries by tag cohort (c), age (a), time (t), and fishery (f). From each tag group and the pooled tag group.

$$
R_{c t f}^{\mathrm{T} \mathrm{pred}}=\frac{F_{c t f}^{\mathrm{T}} X_{t f}}{Z_{c t r}^{\mathrm{T}}}\left[1-e^{-Z_{c t r}^{\mathrm{T}}}\right] N_{c t r}^{\mathrm{T}} ; t \geq t_{c}^{\mathrm{rel}}+n^{\mathrm{mbs}}
$$

Recapture grouping

- Option for aggregating predicted recoveries by fishery groupings (g) - aggregated tag returns, e.g. PS fishery.

Observed tag recaptures

- Observed details: release group, length (at release), recapture period, fishery at recovery.
- Release cohort's ages at recapture is calculated using: length at release, and time at liberty.
- Assignment to regions of release and recapture based on tag group and fishery of recapture.

Example: WCPO skipjack tuna 2019

- Tagging data input
- Fitted recaptures
- Movement estimates

Vincent et al. 2019. WCPFC-SC15-2019/SA-WP-05-Rev2

Tag movements - SKJ

269 release groups 329,811 releases 56,092 recaptures

Fits to the tagging data - SKJ

Fits to the tagging data - SKJ

Fit to observed tag recaptures in respect of time at liberty

Movement estimates - SKJ

4. Partitions for: species, stocks, and gender

- A substantial development - so why?
- Rationale:
- Sharing of parameters among species/stock/sex
- reduces the number of parameters among assessments
- shared catchability for mixed-species fisheries
- Better describe stock-, sex-specific biological processes
- Capability to fit to data aggregated among species/stocks

Adding the species partition

Adding the species partition

- Fisheries mirrored from regions 1 and 2 into - Data is aggregated or dis-aggregated regions 3 and 4
- Data mirrored for regions 3 and 4

Code structure for the region adaptation

- A multi-species class (pmsd) was created to contain the species > 1 members for parameters, pointers, etc.
- Operations were then performed if pmsd is allocated

```
if (pmsd && pmsd->num_species>1)
int ns=pmsd->num_species;
    for (int is=2;is<=ns;is++)
    {
        if (parest_flags(400)==0)
        set_value(pmsd->recr(is)(max(2,first_unfixed_year),
            last_real_year),x,ii,-20.,20,pen,
            100,\overline{year_\overline{flags(1),-10.0);}}\mathbf{\prime}\mathrm{ ;}
    }
    else
```


Code structure for the region adaptation

- Region-specific operations performed in respect of the mirrored regions for each species

```
for (int is=1;is<=fsh.pmsd->num_species;is++)
    min esh.pmsd >region bounds(is,1);
    int rmax=fsh.pmsd->region_bounds(is,2);
    dmatrix tmp(1,fsh.nyears,1,fsh.nage);
    tmp.initialize();
    for (int ir=rmin;ir<=rmax;ir++)
    {
    tmp+=value(fsh.F_by_age_by_year_by_region(ir));
}
```


Fisheries and research data -

 dis-aggregated/aggregatedFishery observations of catch and size compositions (LF and WF)

- any combination of each data type may be either aggregated or disaggregated among species in any specified fishing incident using input flags
- If aggregated:
- Scaling of the species-specific predicted proportions at size for each fishing incident by the species ratio in the predicted catches for the incident
- predictions are aggregated in the likelihood

Fisheries and research data -

dis-aggregated/aggregated
Tag partition - readily accommodated multi-species - data structures are region-specific

Tagging data:

- any release event may be disaggregated or aggregated
- using species flags in the input tag data header record
- Disaggregrated events assigned to regions species
- Aggregated observations:
- replicated for species > 1
- initial release tagged population is apportioned over species according to the predicted region-specific ratios
- the predicted recaptures for each species in the group are aggregated before fitting to the observed aggregated tag recaptures

Method is generic: species / stocks / sexes

- Region adaption facilitates partitioning by species
- Mirrored regions may act as generic "structures" for partitions for all of: species, stocks, or sexes
- Stocks and sexes can be treated as special cases of species - where some biological and fishery processes are shared
- Differences in the processes for partitioning by species, stocks, or sexes are managed via alternative parameterizations for each, achieved by sharing or not ...

Parameterisation differences - species/stock/sex

Configuration	Species	Stock	Sex
Selectivity at length	specific	shared	shared
Catchability - average and deviates	specific	shared	shared
Recruitment region of origin	all or specific	specific	all or specific
Recruitment + deviates	specific	specific	shared
BH-SRR	specific	specific	female only

Other biological parameters may be specific in all cases: natural mortality, growth, maturity, etc.

Parameter management for minimisation

Interface - routines to perform various groupings for parameter vectors or matrices

Interface - method for parameter sharing

Developing and testing the multi-species code

- A substantial development requiring rigorous testing so as not to break the "single species" code
- Generated test model data sets of reduced size (BET/YFT), in a new input format to integrate multispecies data
- A testing framework was created:
- Deterministic evaluations using input parameters in multispecies format (but generated from the single-species solutions) - generated identical model quantities to the SSM
- Fitted multi-species models compared to the single-species solutions
- Routine benchmark tests of single species data using code versions before and after the development.

Flow diagram - multi-species model testing

Single species approach

Working example

- Cut-down data sets for bigeye and yellowfin for the 6 region model, a reduced model time period (1990-2009)

- No production multi-species example (i.e. for a stock assessment) has yet been developed so the following test using the cut-down example is also the demonstration of its implementation in MULTIFAN-CL.

Comparisons

Biomass

Single species vs Mult-species Total Biomass: species 2
Deterministic - identical

Fitted solutions negligible differences

BH-SRR

Yield

SRR curve and pred.Recrs for single/multi-spp models: species 2

SRR curve and pred.Recrs for single/multi-spp models: species 1

Stock partition - example

- Example using real tuna fishery data
- Work in progress, results are only preliminary - the fishery definitions and parameterization; the use of tagging data are still in development
- Proof-of-concept demonstration only
- Bigeye tuna data - WCPO and EPO (based on 2015 Pacific-wide model)
- Configuration is a vast simplification of the original single-stock models

Multi-stock example

Bigeye tuna - WCPO and EPO
Simplified to two regions:

- Region 1 - 1 to 9
- Region 2 - 10 to 12

Single recruitment regions for each stock

- Stock 1 - region 1
- Stock 2 - region 2

Fisheries:

- region 1-33; data aggregated for 6
- region 2-7; data aggregated for 4

Japanese longline CPUE indices
 Tagging data:

- Stock 1-58 release groups
- Stock 2-12 release groups
- Assumed to be disaggregated

Parameters - specific or shared

Biological:

- stock-specific growth (retained with movement among regions)
- recruitment of each stock occurs in its defined region
- movement occurs between the regions (populations in a region are a mix of both stocks)

Fisheries:

- Fisheries act upon the mix of both stocks within each region subject to:
- shared selectivity and catchability

Example: multi-stocks

Region 1

Multi-stock Reg1 Total Recruitment

Multi-stock Reg2 Total Recruitment

Multi-stock Reg1 Total Biomass

Multi-stock Reg2 Total Biomass

Example: multi-stocks

Example:

 multi-stocksSelectivity

Fishery 1 (41)
Fishery 1 (41)
Fishery 1 (41)

Fishery 2 (42)

Multi-sex partition

Rationale

To account for sex-specific population characteristics:

- sex ratio heterogeneity by age/size and region
- growth
- natural mortality
- maturity

Share fishery mortality parameters (selectivity-atlength, catchability)

Explicitly model dynamics of female spawning potential

Sex ratio

Growth - SWO

Multi-sex parameterisation

- recruitments are shared (50:50\%)
- BH-SRR - only female spawning biomass
- increased parameter sharing, e.g. lengthbased selectivity

When disaggregated data is not available...

...provision for shared effort deviate parameters among sexes

Fishing mortality:

$$
F_{a t f}=s_{a f} q_{t f} B_{r f}^{\beta} E_{t f}^{\zeta} e^{e_{t f}}
$$

$s_{a f}$ is the selectivity coefficient of fishery \boldsymbol{f} for age-class \boldsymbol{a} fish,
$q_{t f}$ is the catchability coefficient for fishery f in time period \boldsymbol{t},
B is a biomass index for region r and time period \boldsymbol{t},
$\beta_{t r}$ is the parameter for effect of biomass on catchability (default= 0),
$E_{t f}$ is the fishing effort of fishery \boldsymbol{f} in time period \boldsymbol{t}, and
ζ is the parameter for effect of effort on catchability (default= 1),
$\varepsilon_{t f}$ represents transient deviations in effort

Shared effort deviates for multi-sex model

- disaggregated fisheries data unavailable

The fisheries are mirrored for sex 1 and sex 2
So... multi-sex model has fishing mortalities for each sex:

- without dis-aggregated data, there are no observed sexratios in fishery data
- with average catchability $q_{t f}$ being shared among sexes
- minimisation instability can occur and strongly positive or negative effort deviates ($\varepsilon_{t f}$) may be estimated if unconstrained
- this can be stabilised by assuming the $\varepsilon_{t f}$ are also shared

Sex-partition - development and testing

- Applied same approach as for multi-species
- Adapted the example: two identical species; configured for multiple sexes
- Criterion: BH-SRR recruitments, Equilibrium yield, $\mathrm{F}_{\text {MSY }}==$ double that of the single species
- Was correct in deterministic and fitted comparisons

Examples

- Takeuchi et al. 2018 - south-west Pacific swordfish, WCPFC-SC14-2018/SA-IP-10 (presented here)
- Ducharme-Barth et al. - south-west Pacific striped marlin, WCPFC-SC15-2019/SA-WP-07

Swordfish

Swordfish

 set equal

Summary of species/stock/sex partitions

- Partitioning has not been achieved using explicit data structures
- Region partition adaptation provided a ready means that was consistent with the existing fisheries and tagging structures
- Development code testing was positive
- Working examples have been developed for each partition, but not yet applied for a production assessment
- While it may, or may not, be feasible, no working example using 2 or 3 of the partitions in a single model has been attempted
- To date, no more that 2 species/stocks/sexes partitions have been attempted
- No interaction processes among partitions have yet been implemented

5. Software development and testing - source code testing and repository

Formal testing procedure for ensuring integrity of source code developments has two stages:

1. Detailed testing of a new feature

- Specific example used employing the feature

2. "Benchmark" testing

- Routine tests - Pair-wise comparisons among development and release versions prior to advancing a new release version
- Uses test data: single-species, multi-species/sex, projections, stochastic simulations

Github repository branches - development and release versions

Schema for MFCL development and testing

6. Improvements possible and development recommendations

1. Data structure

With the benefit of hindsight...

- The first rule: "establish the correct data structures to begin with, and then the code will write itself"
- The region-adaptation appears to work for species/stock/sex partition but...
- Proved to be a complex coding task
- Is restricted by the parameterisation requirements using the mirrored fisheries
- May become difficult when using more than one partition
- Would have been better to use the appropriate data structure

Improvements possible and development recommendations

Fully dimensioned data structure:
N(species, stock, sex, region, growth_morph, time_period, age, length)

Reduces to a current model population data structure:

$$
\mathrm{N}(1,1,1, \text { region, } 1, \text { time-period, age, } 1)
$$

Coding challenges to avoid inefficiencies in memory management due to a large multi-dimensional array.

Improvements possible and development recommendations

2. Length-structure

N(species, stock, sex, region, growth_morph, time-period, age, length)
Note included additional partitions for:

- length
- growth morphs

To explicitly model region-specific growth rates in a multi-stock model with movement among regions

To explicitly model individual growth variability

Improvements possible and development recommendations

3. Multi-threading

Motives for increasing model complexity using partitions include:

- Biological processes - the need to better describe real processes that entail partitions, e.g. movement, growth, sub-population processes
- Fishery and management specifications - spatially-based regimes

Increased computational requirements, e.g. multi-region tuna models require up to 24 hours to converge
Multi-threading has been trialed for tagging calculations
TMB offers a ready means to overcome this computational challenge

Improvements possible and development recommendations

4. Development with examples

Development of complex multi-partitioned models is best done with:

- Example model data expressing all partitions
- Pair-wise testing versus an existing "accepted" version

Existing multi-partitioned software (e.g. MULTIFAN-CL) should be used to generate these example data sets in simulation mode and for undertaking the development and testing

Thanks!

[^0]: Fournier, D.A., Hampton, J., and Sibert, J.R. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can. J. Fish. Aquat. Sci., 55:2105-2116.

