A spatially-explicit population dynamics and stock assessment model driven by environmental variables

Patrick Lehodey and Inna Senina (Collecte Localisation Satellite)
with contributions from John Hampton (SPC) and John Sibert (Univ. Hawaii)
Email plehodey@cls.fr

SEAPODYM introduction

Spatial Ecosystem And Population Dynamics Model

An hybrid modeling
 framework to combine:

- the progress in ecological sciences to describe ocean pelagic ecosystem and species habitats and behaviour;
- The progress in ocean (physical and biogeochemical) modeling;
- the progress achieved in stock assessment models for quantitative estimation of population dynamics parameters models (MLE).

cLs
 SEAPODYM introduction

Spatial Ecosystem And Population Dynamics Model

2D - 3-layer environment:

T°, U\&V, PP, Zeu, O2, Zoo, unekton
habitats + movements
Integrated over day-night conditions in the 3 vertical layers

2D - fish population dynamics
(ADR)

+ fisheries \& parameter estimation
(spatial resolution from 2° to 9 km)

[^0]
Micronekton (forage)

Temperature; currents Primary production

Biomass epipelagic vs NASC signal
Biomass upper mesopelagic vs NASC
Biomass lower mesopelagic vs NASC signal

http://www.cls.fr

Outline

I - SEAPODYM Fish spatial dynamics modelling

- Feeding Habitat
- Movement
- Spawning habitat and recruitment

II - Applications to tuna

- Parameters and stock estimates
- Environmental variability
- Impact of Climate change

SEAPODYM-Fish

ADR (Da, Ua, R, Za)
Spatial dynamics based on advection - diffusion - reaction equations with movement \propto to fish size and habitat

Movement following habitat gradient

Model parameter Estimation (MLE) (spatially-disaggregated catch, size, acoustic and tagging data) Population Age structured Growth By mortality cohort

Feeding

 Habitat, Ha

IF MATURE seasonal switch for spawning migration (optional)

Spawning

Habitat, Hs

SEAPODYM-Fish Feeding Habitat

$\mathrm{Ha}=$ index accounting for the abundance of different groups of forage and their accessibility in the vertical layer inhabited (day and night changes)

Biomass in layer z due to migrant groups present during the day (τ)

Biomass in layer z due to migrant

Biomass in layer z due to non-migrant group

SEAPODYM-Fish Feeding Habitat

Feeding habitat of loggerhead turtles
One-year displacements of 29 ind. released in May 2005 (final position = red dots)

(Abécassis et al 2013)

SEAPODYM - Fish Movement

Rules of movements $\left(D_{a}, U_{a} V_{a}\right)$ based on H_{a}

Habitat is null (no gradient) Diffusion rate is maximum Advection minimum

Habitat is high (no gradient)
Diffusion rate is minimum
Advection minimum

Habitat is low (high gradient)
Diffusion rate is low Advection is high

Habitat is medium (gradient)
Diffusion \% with Habitat value Advection \% with Habitat gradient

Advection: Passive (currents) + active (swimming)

$$
U_{a}=\hat{u}+\chi_{a} \frac{\partial H_{a}}{\partial x}, V_{a}=\hat{v}+\chi_{a} \frac{\partial H_{a}}{\partial y}
$$

$$
\chi_{a}=V L_{a}{ }^{A}
$$

2 parameters

- V: velocity (BL/s) at maximal habitat gradient
- A: slope coefficient

ONLY 4 parameters to define the movement of all cohorts

SEAPODYM - Fish Movement

SEAPODYM Fish - Spawning \& Recruits

Spawning habitat H_{s}

$$
H_{s}=f_{1}(\text { prey }) f_{2}\left(T^{\circ}\right) f_{3} \text { (predator) }
$$

Larvae recruits $N(0, t, x)$

$$
N(0, t, x)=H_{s} \frac{R \widehat{N}}{1+b \widehat{N}} \quad \text { with } \widehat{N} \quad \text { Number of mature fish }
$$

Then recruited larvae drift with currents; Average mortality coefficient + a range of variability $\propto \mathrm{Hs}$

Density of Atl. Bluefin tuna larvae (5-30 d) end of May 2010

http://www.cls.fr

Applications: Param. Estimation

Spawning habitat and Reproducti
σ_{0} standard deviation in temperature Gaussian function at age $0,{ }^{\circ} \mathrm{C}$
T_{0}^{\star} optimal surface temperature for larvae, ${ }^{\circ} \mathrm{C}$
α_{P} prey encounter rate in Holling (type III) function, day ${ }^{-1}$
α_{F} Log-normal mean parameter predator-dependent function, $\mathrm{g} / \mathrm{m}^{2}$
β_{F} Log-normal shape parameter in predator-dependent function
R reproduction rate in Beverton-Holt function, mo^{-1} slope parameter in Beverton-Holt function, $n b / \mathrm{km}^{2}$

Mortality

\bar{m}_{p} predation mortality rate age age $0, \mathrm{mo}^{-1}$
β_{p} slope coefficient in predation mortality
$5 . \bar{m}_{s}$ senescence mortality rate at age $0, \mathrm{mo}^{-1}$
β_{s} slope coefficient in senescence mortality
$\epsilon \quad$ variability of mortality rate with habitat index $M_{H} \in$ $\left(\frac{M}{(1+\epsilon)}, M(1+\epsilon)\right)$

Feeding habitat
T_{0} optimal temperature (if Gaussian function), or temperature range for the first young cohort, ${ }^{\circ} \mathrm{C}$
T_{K} optimal temperature (if Gaussian function), or temperature range for the oldest adult cohort, ${ }^{\circ} \mathrm{C}$
γ slope coefficient in the function of oxygen)
\hat{O} threshold value of dissolved oxygen, ml / l
E_{11} contribution of epipelagic forage to the habitat
E_{22} contribution of mesopelagic forage to the habitat
E_{21} contribution of migrant mesopelagic forage to the habitat
E_{33} contribution of bathypelagic forage to the habitat
E_{32} contribution of migrant bathypelagic forage to the habitat
E_{31} contribution of highly migrant bathypelagic forage to the habitat

Movement

$$
4 \begin{cases}A & \text { slope coefficient in allometric function for tuna velocity } \\ \sigma & \text { multiplier for the theoretical diffusion rate } \frac{\bar{V}^{2} \Delta T}{4} \\ c & \text { coefficient of diffusion variability with habitat index }\end{cases}
$$

26 parameters + 3 or 4 par by fishery (growth, age at maturity from independent studies).

The Maximum Likelihood Estimation approach has been implemented in SEAPODYM to include:

- spatially disaggregated catch and size frequency data (Senina et al. 2008)
- Spatially disaggregated catch (Senina et al 2016)
- Acoustic biomass estimates, by analogy to a pseudo fishery without mortality (Dragon et al. 2015)
- Tagging data (Senina et al 2017; in rev.)

Applications: Param. Estimation

Evaluation
Fit to data

Model inter-comparison

skj B Adult region 2

Sensitivity analyses (in dev.)

Applications: Param. Estimation

For tagging data

- the choice was to use only data from recaptures to be independent of fisheries
- this information contributes mainly to the estimation of movement and habitats parameters
- Data are aggregated by time strata, e.g. quarter, and distributions smoothed using Gaussian kernels to reduce the errors related to recapture date and positions.
- More weight to longer time of liberty at sea
- The same model of A\&D is used without considering mortality.

Senina I., Lehodey P., Calmettes B., Nicol S., Caillot S., Hampton J. and P. Williams (2016). Predicting skipjack tuna dynamics and effects of climate change using SEAPODYM with fishing and tagging data. WCPFC, 12th Regular Session of the Scientific Committee, Bali, Indonesia 3-11 August 2016, WCPFC-SC122016/EB WP-01: 71 pp. http://www.wcpfc.int/node/27443

cLs Applications: Stock estimates

Pacific Skipjack

Physical \& biogeochemical forcing:

 NEMO-PISCES $2^{\circ} \mathbf{x}$ month driven by atmospheric reanalysis INTERIM 1979-2010
Age structure:

36 monthly cohorts + one (age+).
Age-length and age-weight from MULTIFAN-CL estimate (Rice et al., 2014).

Fishing:

Revised SPC + IATTC (2013) datasets (6 pole-and-line, 9 purse-seine and 2 longline fisheries)

Tagging data:

Tags recaptured between May 2008 and Dec 2010

Total spatially distributed catch of skipjack tuna (dashed lines mark simulation time period, solid lines - total landings)

SKJ conventional tagging data with recaptures in 2009-2010 + are release positions)

cLs Applications: Stock estimates

Kernel

Predicted recaptures

$150^{\circ} \mathrm{E}$

CLS Applications: Stock estimates

Pacific Skipjack
 Impact on habitats \& dynamics

Recruited larvae (nb/ km²) 1980-2010

Recruitment time series

Applications: Environmental Var. -

Skipjack \& ENSO

Predicted total biomass of skipjack tuna

cls Applications: Environmental Var.

Skipjack \& ENSO

Applications: Climate Change

CC projections: Ensemble simulation to account for uncertainty

Past \& present conditions

Atmospheric reanalysis based on observations (INTERIM)

PROJECTIONS

Atmospheric forcing from 5 selected IPCC AR5 Earth Climate models (IPSL, GFDF, NorESM, MIROC, MPI) - scenario RCP8.5

Filtering to avoid abrupt changes between historical and projected series

Coupled ocean-biogeochemical model (NEMO-PISCES)

I
SEAPODYM optimization with historical data

II
SEAPODYM projections: ensemble simulation

Applications: Climate Change

I-Optimization

Comparison of predicted distributions for $1^{\text {st }}$ and last decade of the historical time series. Total observed catches are shown with catch proportional to circles (same scales between decades).

Skipjack: WCPFC SC12 \& Senina et al. (sub.)

Yellowfin: WCPFC SC13
Bigeye: WCPFC SC 14
South Pacific Albacore: WCPFC SC14
 Applications: Climate Change

II - Ensemble simulation

Uncertainty explored in the simulation ensembles produced for this study

Uncertainty in atmospheric forcing		Structural uncertainty in biogeochemical model
Code	CMIP5 model	
IPSL	IPSL-CM5A-MR (Institut Pierre Simon Laplace, France)	Primary production: Increase of PP by 10\%
MIROC	MIROC-ESM (Model for Interdisciplinary Research on Climate, Japan)	(PPIO) in tropical waters (defined by SST $>27^{\circ} \mathrm{C}$)
NorESM	NorESMI-ME (Norwegian Climate Centre, Norway)	- Dissolved Oxygen: No
MPI	MPI-ESM-MR (Max Planck Institute for Meteorology, Germany)	change (O2clim) = Use of climatological fields
GFDL	GFDL-ESM2G (Geophysical Fluid Dynamics Laboratory, USA)	

Structural uncertainty in SEAPODYM

Genetic adaptation:
Regular increase in optimal spawning temperature to reach $+2^{\circ} \mathrm{C}$ at the end of the Century

Ocean acidification: Additional mortality on larvae based on laboratory experiments with low medium and high sensitivity to pH (available only for yellowfin).

Ensemble of 20 members for SKJ, BET and ALB projections and 35 for YFT (with additional Ocean acidification scenarios)

Applications: Climate Change

II - Ensemble simulation (skipjack)

Biomass,WCPO

Catch, WCPO

Biomass, EPO

Catch, EPO

Senina et al. (2018) Impact of climate change on tropical tuna species and tuna fisheries in Pacific Island waters and high seas areas $14^{\text {th }}$ Scientific Committee of the WCPFC, Busan, South Korea, 8-16 Aug. 2018. WCPFC-SC14-2018/ EB-WP-01, 44 pp. https://www.wcpfc.int/node/30981

Conclusions

- SEAPODYM simulates spatial structure \& spatial dynamics of exploited pelagic fish species
- MLE approach at the resolution of the model => hundred thousands of data are assimilated
- Recent integration of tagging data in the MLE has greatly improved skipjack optimization
- With fish dynamics driven by environmental variables, the model can help to understand (forecast?) natural climate variability (e.g., ENSO) and impacts of climate change
- The results are sensitive to the quality of environmental forcings
- Ensemble simulations help to account for uncertainty
- Multiple possible applications, spatial management, connectivity study, operating model, ... References

www.seapodym.eu

Lehodey P., Senina I., Wibawa T. A., Titaud O., Calmettes B., Tranchant B., and P. Gaspar (2017). Operational modelling of bigeye tuna (Thunnus obesus) spatial dynamics in the Indonesian region. Marine Pollution Bulletin https://doi.org/10.1016/j.marpolbul.2017.08.020

Dragon A-C., Senina, Hintzen N.T., Lehodey P., (2017). Modelling South Pacific Jack Mackerel spatial population dynamics and fisheries. Fisheries Oceanography. http://onlinelibrary.wiley.com/doi/10.1111/fog.12234/full

Dragon AC, Senina I., Conchon A., Titaud O., Arrizabalaga H. and Lehodey P. (2015). Modeling spatial population dynamics of North Atlantic Albacore tuna under the influence of both fishing and climate variability. Canadian Journal of Fisheries and Aquatic Sciences. 72: 1-15 http://www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2014-0338

Lehodey, P., Conchon, A., Senina, I., Domokos, R., Calmettes, B., Jouanno, J., Hernandez, O., and Kloser, R. (2015) Optimization of a micronekton model with acoustic data. - ICES Journal of Marine Science, 72(5): 1399-1412. https://academic.oup.com/icesjms/article/72/5/1399/765328

Senina I., M. Borderies, P. Lehodey. 2015. A spatio-temporal model of tuna population dynamics and its sensitivity to the environmental forcing data. Applied Discrete Mathematics And Heuristic Algorithms, Online

RESEARCHGATE

Follow SEAPODYM Project on ResearchGate

Thank you.

[^0]: http://www.cls.fr

