Spatial State-Space Survey Based Assessment Model for the Grand Banks American Plaice

Rajeev Kumar and Noel Cadigan

Memorial University of Newfoundland and Labrador October 4, 2018 CAPAM workshop on spatial stock assessment models

Outline

- Introduction
- Methods
- Model selection
- Results from the best model

Introduction

- American Plaice is a demersal marine flatfish
 - Once considered to be the most abundant flatfish in Newfoundland and Labrador (NL) waters
 - Under moratorium since 1995
- NL population of American plaice is managed as 3 stocks:
 - 2GHJ3K (Labrador and the northeast coast of Newfoundland stock),
 - 3LNO (the Grand Bank stock), and
 - 3Ps (St. Pierre Bank stock)

Survey-based assessment model(SURBA):

- ▶ is useful when catch information is not available OR not reliable
- gives estimate of F and Z, and relative stock size and cohort strength
- can also provide some idea about catch, which can be compared with reported catch trend
- Spatial SURBA:
 - Accounts for spatial differences in the stock

Survey data

- Abundance indices from Canadian RV surveys
- 1995 (Fall)-2015: smaller meshed Campelen trawl conducts survey
- Engel , a larger-meshed, trawl was used in earlier years

					Fall									Sprg				
15+ -					• /]	/*/**	• / • • •											
12 -																		
9 -																		
6 -																		
3 -																		
									•									
15+ -				2000			****			200	2222							
12 -																		
-e 8																		
6 -																		
3-																		
				••••	000 000				•							•••	• • • •	
15+ -							*****				2222						****	****
12 -																		
9 -																		
6 -																		
				0000 0000								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
3-					000								6 66	000				
	1975 -	1980 -	1985 -	1990 -	1995 -	2000 -	2005 -	2010-	2015-	1975-	1980 -	1985 -	1990 -	1995 -	2000 -	2005 -	2010-	2015 -
									Yea	ars								

Methods

 Abundance (N) at age (a), year (y) in a given division (D) is equal to cohort size*cumulative mortality (Z)

$$N_{a+1,y+1,D} = N_{a,y,D} * \exp(-Z_{a,y,D}) * \exp(\delta_{a+1,y+1,D})$$

$$\begin{array}{c} \triangleright \text{ Process errors correlated: } \delta \sim MVN_D(0, \Sigma) \\ \begin{pmatrix} \delta_{a,y,3L} \\ \delta_{a,y,3N} \\ \delta_{a,y,30} \end{pmatrix} \sim N\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_{3L}^2 & r_{3LN}\tau_{3L}\tau_{3N} & r_{3L0}\tau_{3L}\tau_{30} \\ r_{3LN}\tau_{3L}\tau_{3N} & \tau_{3N}^2 & r_{3N0}\tau_{3N}\tau_{30} \\ r_{3L0}\tau_{3L}\tau_{30} & r_{3N0}\tau_{3N}\tau_{30} & \tau_{30}^2 \end{bmatrix} \right)$$

where, $\tau = st. dev$; r = divisional corr. coef of process error

 $\triangleright \quad Z_{a,y,D} = F_{a,y,D} + M_{a,y,D}$

> F is separable into age effect (S_a) and year effect (f_y)

 $\triangleright F_{a,y,D} = s_a * f_{y,D}$

Methods: Lorenzen M

M is calculated using Lorenzen's equation

- M is related to body weight (W) of fish.
 - ► $M_a = M_\infty * (W_a/W_\infty)^{-0.305}$

The equation was reformulated in terms of growth parameters (vonB and L-W)

 $\blacktriangleright M_{a,y,D} = M_{\infty} * \left(1 - \exp\left(-k_{c=y-a,D} * (a - a_{o_D})\right)\right)^{-0.305 * b_D}$

 \triangleright M_{∞} (M of a very old fish) is a scaling factor. We assumed it 0.1

- \triangleright $k_{y-a,D}$ and a_{o_D} were estimated using weighted likelihood approach (Zheng et al. 2018)
- Allometric exponent b of L-W was estimated separately for each division using individual data

Zheng,N.,Cadigan,N.,and Morgan,JM.(in prep).A Spatiotemporal Von Bertalanffy Growth Model and Its Estimation When Data are Collected Through Length-Stratified Sampling, With Application to American Plaice Data Abundance index (I) for age (a), year (y) and divisions D is given by

$$I_{a,y,D} = \frac{q_{a,y,D} * N_{a,y,D} * \exp(-Z_{a,y,D} * sf)}{Swept \ area \ ratio \ (\psi)} * \exp(\epsilon)$$

$$\epsilon \sim \begin{cases} N(0, \sigma_1) \text{ if } a \le 5\\ N(0, \sigma_2) \text{ if } a > 5 \end{cases}$$

Swept area ratio of Engel/Campelen =1.83; therefore,

 $\mathbf{\flat} \ \psi = \begin{cases} 1.83 \ if \ gear \ is \ Engel \mid y \le 1995 \ Spring \\ 1.0 \ if \ gear \ is \ Campelan \mid y \ge 1995 \ Fall \end{cases}$

Cont.. Methods: Catchability in the observation model

Catchability (q) is modelled as the function of fish length

Camplen catchability (q_c) is assumed to follows logistic function of fish length

q_c = *f*(*L_{a,s,y-a,D}*) [where s is survey, a=age, y=year, D =Division] *f* = ^{exp(β₀+β₁*L)}/_{1+exp(β₀+β₁*L)} *β*₁ = ^{log(19)}/_{L95}-L₅₀ *β*₀ = -β₁ * L₅₀ *L*₉₅ and *L*₅₀ were estimated as parameters

Cont.. Methods: Catchability in the observation model

• Engel catchability (q_e) is estimated from Campelen catchability and length-based conversion factors (CF) derived from the experimental fishing (Morgan et al 1998)

$$q_e = q_c / CF$$

$$kif \ L \le 23cm$$

$$CF = \begin{cases} \exp\left(39.96 + 0.36 * (L - 41 * log(L))\right) & if \ 23 < L < 40 \\ 1 & if \ L \ge 40cm \end{cases}$$

- \triangleright λ was estimated as a parameter
- Therefore, catchability (q) in the observation model is:

$$\bullet q = \begin{cases} q_{e,} & \text{if } y \le 1995 \text{ Spring} \\ q_{c,} & \text{if } y \ge 1995 \text{ Fall} \end{cases}$$

M.J. Morgan, W.B. Brodie, W.R. Bowering, D. Maddock Parsons and D.C. Orr (1998). Results of Data Conversions for American Plaice in Div. 3LNO from Comparative Fishing Trials Between the Engel Otter Trawl and the Campelen 1800 Shrimp Trawl. NAFO SCR Doc. 98/70

Model fitting

▶ Fitted in log-scale, Used TMB

 $\blacktriangleright \quad F_{a,y,D} = s_a * f_{y,D}$

- Random walk model for age effect (sa)
 - Assumed constant age-effect between the divisions
 - Estimated independent variances for younger ages 1-9 (sa1) and fully selected ages >=10 (sa2)
- Random walk model for year-effect $(f_{y,D})$
 - Estimated independently for each division, but has a common variance
- PEs are random with correlated MVN
- Recruitment is estimated with Auto-regressive model of order 1 (AR1)

Cont.. Model fitting: Autoregressive model (AR1) for recruitment

- Spatio-temporal Correlation in the recruitment (R_y) of the Divisions (D) were implemented through stationary AR(1) model with multivariate normal error
 - AR1 process:
 - $\log(R_{y,D}) = c_D + \phi_D * \log(R_{y-1,D}) + e_{y,D}$
 - The deviations from the AR1 process are correlated and follow multivariate normal distribution in the Divisions (D) 3LNO:

$$\left(\begin{pmatrix} e_{y,3L} \\ e_{y,3N} \\ e_{y,3O} \end{pmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \omega_{3L}^2 & \rho_{3LN} \omega_{3L} \omega_{3N} & \rho_{3LO} \omega_{3L} \omega_{3O} \\ \rho_{3LN} \omega_{3L} \omega_{3N} & \omega_{3N}^2 & \rho_{3NO} \omega_{3N} \omega_{3O} \\ \rho_{3LO} \omega_{3L} \omega_{3O} & \rho_{3NO} \omega_{3N} \omega_{3O} & \omega_{3O}^2 \end{bmatrix} \right)$$

where, $\omega = st. dev$; $\rho = divisional corr. coef of deviations (errors)$

Cont.. Autoregressive model (AR1) for recruitment

▶ Marginal distribution of $log(R_{y,D})$ under the stationary assumption of AR1 is:

$$\log(R_{y,D}) \sim N(\mu_D, \Psi_D)$$

where,
$$\mu_D = c_D(1 - \phi_D)$$
 and $\Psi = \frac{\omega_D}{\sqrt{1 - \phi_D^2}}$

> The marginal correlation in the recruitment between any two divisions is given by

$$-corr(\log(R_{y,d_1}),\log(R_{y,d_2})) = \rho_{d_1d_2} = \rho_{d_1d_2} \frac{\sqrt{1-\phi_{d_1}^2}\sqrt{1-\phi_{d_2}^2}}{1-\phi_{d_1}\phi_{d_2}}$$

Therefore, the marginal joint distribution of the recruitments is

$$\begin{pmatrix} \log(R_{y,3L}) \\ \log(R_{y,3N}) \\ \log(R_{y,3O}) \end{pmatrix} \sim N \begin{pmatrix} \left[\log(R_{y-1,3L}) \\ \log(R_{y-1,3N}) \\ \log(R_{y-1,3O}) \right], \begin{bmatrix} \Psi_{3L}^2 & \varrho_{3LN}\Psi_{3L}\Psi_{3N} & \varrho_{3LO}\Psi_{3L}\Psi_{3O} \\ \varrho_{3LN}\Psi_{3L}\Psi_{3N} & \Psi_{3N}^2 & \varrho_{3NO}\Psi_{3N}\Psi_{3O} \\ \varrho_{3LO}\Psi_{3L}\Psi_{3O} & \varrho_{3NO}\Psi_{3N}\Psi_{3O} & \Psi_{3O}^2 \end{bmatrix} \end{pmatrix}$$

Model comparison

Models	nll	Dev	N of fixed parms	AIC	BIC	convergence
No PE	3079.704	6159.407	62	6283.407	6650.475	YES
Common PE	2976.099	5952.197	63	6078.197	6451.185	YES
Division-wise correlated PE	2945.013	5890.027	68	6026.027	6428.617	YES

> Based on lowest AIC, the model with division-wise correlated PE is selected

> Results presented in the following slides are based on this model

Results: model fitting

Survey: 🔶 Fall 🔶 Sprg

Survey: 🔶 Fall 🔶 Sprg

Results: residuals

 Residual patterns against years, cohort, ages, or predicted index do not show any obvious patterns

Results: all variances

Results: catchability at length

Results: changes in catchabilities

Years

Results: process errors

Results: recruitment series and their correlation

Results: relative biomass and SSB

Results: recruits per spawner

Results: comparison of catch with reported trends in landings

Source: NAFO SCS Doc. 16/30

The spatial model shows that stock status estimates for the divisions are substantially different from each other

Recruitment in 3LNO shows moderate to strong correlation

Productivity above average in recent years

THANK YOU

Comments and Questions?