A simulation comparison of spatiotemporal and spatially-implicit size-structured models for northern shrimp and snow crab

Jie Cao, James T. Thorson, André Punt, Cody Szuwalski

Outline

- Spatially-implicit/Spatially-stratified/Spatiotemporal models
- Spatiotemporal modeling framework (snow crab/northern shrimp)
- Simulation experiments
- recover spatial patterns/unbiased estimates of spatially-aggregated population quantities
- implicitly accounts for movement processes
- outperforms spatially-implicit models

Why spatiotemporal model ?

- Heterogeneous and complex spatial structure - population and fishery
- Spatially-implicit models - biased estimates of population quantities
- Spatially-stratified models
- spatial strata/movement of individuals among strata

Correlations - process errors/fishery patterns
Spatial correlation (either based on adjacency or distance)

Spatiotemporal population model

- Combines theory and methods from population dynamics and geostatistics
- Assume population density varies continuously across space

$$
x\left(s_{i}\right) \sim N\left(\frac{1}{\left|n_{i}\right|} \sum_{j \in n_{i}} x\left(s_{j}\right), \sigma^{2}\right)
$$

- Joint distribution for density at all locations
- Expand to account for size-structured population dynamics

Objectives

- Development - estimating population dynamics at a fine spatial scale
- Demonstration - two species (snow crab and northern shrimp)
- Comparison - spatiotemporal model vs. spatially-implicit model
- Evaluation - effect of sample size

Why size-structured models?

- Advantages:
- Requires no ability to age animals (shrimps, crabs, lobsters)
- Uses the data actually available
- Vulnerability / maturity are often functions of size and not age

Process model

Abundance at size (n) for a given location s and time t

Population dynamic ($g()$)

- Example 1: Gulf of Maine northern shrimp
$g\left(\mathbf{n}_{s, t}\right)=\mathbf{G}\left(\mathbf{n}_{s, t-1} \circ \exp \left(-\mathbf{m}_{s, t-1}-\mathbf{v} f_{s, t-1}\right)\right)+\mathbf{r}_{s, t}$

Initial condition:

$$
g\left(\mathbf{n}_{s, 1}\right)=\mathbf{r}_{s, t} \circ \exp (\boldsymbol{\varphi})
$$

The predicted harvest per area:

$$
\begin{aligned}
& \mathbf{c}_{s, t}=\frac{\mathbf{v} f_{s, t}}{\mathbf{v} f_{s, t}+\mathbf{m}_{s, t}} \circ\left(1-\exp \left(-\mathbf{m}_{s, t}-\mathbf{v} f_{s, t}\right)\right) \circ \mathbf{n}_{s, t} \\
& \log \left(f_{s, t}\right) \log \left(f_{s, t-1}\right) \sim \mathrm{N}\left(\log \left(f_{s, t-1}\right), \sigma_{f}^{2}\right)
\end{aligned}
$$

Population dynamic ($g()$)

- Example 2: Eastern Bering sea snow crab

$g\left(\mathbf{n}_{s, t}^{\text {male }}\right)=\left\{\begin{array}{lr}\mathbf{r}_{s, t} p^{\text {male }}+\mathbf{G}^{\text {male }}\left(\mathbf{n}_{s, t-1}^{\text {male }} \circ \exp \left(-\mathbf{m}_{s, t-1}-\mathbf{v} f_{s, t-1}^{\text {male }}\right)\right) \circ\left(1-\mathbf{w}^{\text {male }}\right), & n=\mathbf{n}^{\lambda} \\ \mathbf{G}^{\text {male }}\left(\mathbf{n}_{s, t-1}^{\text {male }} \circ \exp \left(-\mathbf{m}_{s, t-1}-\mathbf{v} f_{s, t-1}^{\text {male }}\right)\right) \circ \mathbf{w}^{\text {male }}+\mathbf{n}_{s, t-1}^{h} \circ \exp \left(-\mathbf{m}_{s, t-1}-\mathbf{v} f_{s, t-1}^{\text {male }}\right), & n=\mathbf{n}^{\omega}\end{array}\right.$

Initial condition:

$$
\begin{aligned}
& g\left(\mathbf{n}_{s, 1}^{\text {male }}\right)=\mathbf{r}_{s, 1} p^{\text {male }} \circ \exp \left(\boldsymbol{\varphi}_{\text {male }}\right) \\
& \mathbf{c}_{s, t}=\left(1-\exp \left(-\mathbf{v} f_{s, t}^{\text {male }}\right)\right) \circ \mathbf{n}_{s, t}^{\text {male }} \circ \exp \left(-0.5 \mathbf{m}_{s, t}\right) \\
& \log \left(f_{s, t}\right) \mid \log \left(f_{s, t-1}\right) \sim \mathrm{N}\left(\log \left(f_{s, t-1}\right), \sigma_{f}^{2}\right)
\end{aligned}
$$

Model parameters and estimation

Fixed effects

$\boldsymbol{\Theta}_{\boldsymbol{L}}$	process error covariance (among size classes)
$\boldsymbol{\kappa}$	geostatistical range for correlations
μ_{t}	average offset of annual recruitment
$\boldsymbol{\varphi}$	initial abundance of each size class
s	parameters of selectivity (logistic) \quadParameters of observation model

Random effects

$\mathrm{r}_{t}^{u} \quad$ spatial variation in recruitment
$\mathrm{n}_{t} \quad$ spatial variation in density for each size class and year
f
fishing mortality of location s over time
treat density as random, rather than process errors
$\left(\varepsilon_{t}\right)$

Gaussian Markov random field (GMRF)

- Continuous spatial process -> discretely indexed GMRF
- Matérn covariance function
- Mesh/knot
- SPDE - MVN
- Piecewise constant
- Catch - lognormal

- Survey - lognormal/Poisson-link

Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science, 72(5), pp.1297-1310.

Input data

survey data

commercial catch data

X	lat	lon	year	X. 1	X. 2	X. 3	X. 4	X. 5
1	55.6	-169	1	0.802	2.82	2.32	3.18	7.18
2	56.3	-170	1	0.657	1.83	1.54	2.15	4.94
3	56.3	-170	1	0.662	1.82	1.54	2.16	4.96
4	56.2	-171	1	0.64	1.78	1.5	2.1	4.81
5	56.2	-170	1	0.645	1.8	1.51	2.12	4.85
6	56.2	-170	1	0.646	1.82	1.52	2.13	4.88

- fine scale
- aggregated to knot-level

Model outputs

- Predicted population density map
- Estimated fishing mortality map
- Predicted catch map
- Estimated covariance of process error

Simulation - operating model

- Dynamics occur at fine scale
- Population dynamics (non-spatial) formulated identically to EM
- Cell-specific parameters (spatially correlated)
- Annual time step
- Movement $\mathbf{N}_{t+1}=g\left(\mathbf{M N}_{t}\right) \circ e^{\boldsymbol{\Sigma}_{t}}$

$$
\frac{\partial}{\partial t} \mathbf{n}=\mathbf{N} \mathbf{n}
$$

\boldsymbol{N} is the matrix of instantaneous movement rates

$$
\mathbf{M} \approx\left(\mathbf{I}+\frac{\mathbf{N} \Delta t}{n_{t d i v}}\right)^{n_{t d i v}}
$$

Simulation experiments

1. Explore how the spatiotemporal model performs when individual movement processes are modeled explicitly
2. Compare spatially-implicit and spatiotemporal models
3. Evaluate the impact of changing sample size

Simulation experiments

- Experiment 1: Exploring movement

1. No measurement error and no movement in the OM
2. Same as scenario 1 , except there is movement
3. Both measurement error and movement in the OM

- 200 sites (grid cells) in the OM were randomly sampled each year
- For each site, total abundance by size class and the total area of the sampled site were recorded
- Fishery catch-at-size was calculated at each of the 36,140 grids and then aggregated to the knot level as data for the EM
- For the scenarios with measurement error, we generated 100 replicated data sets with sampling errors, i.e., grid-based survey abundance and fishery catch data were assumed to be lognormally distributed

Simulation experiments

- Experiment 1: Exploring movement

Simulation experiments

- Experiment 1: Exploring movement

Catch

Simulation experiments

- Experiment 1: Exploring movement

Spatially-aggregated total abundance (a) and total removals (b) by size class over time

Size class 1

Size class 2

Size class 3

Size class 4

Size class 5

Simulation experiments

- Experiment 2: comparison of spatiotemporal and spatially-implicit models

Spatially-implicit model - size structured assessment model for Pandalus (Cao et al. 2017)

[^0]
Simulation experiments

- Experiment 2: comparison of spatiotemporal and spatially-implicit models
- the data used in both estimation models are the same at the grid spatial scale
- 50 knots for the spatiotemporal model
- a metric that is directly comparable
- abundance-at-size, fishing mortality at size and spawning stock biomass aggregated over the spatial domain
- population-level fishing mortality
- aggregate selectivity-at-length

$$
\begin{aligned}
\mathrm{RMSE}_{l} & =\sqrt{\frac{\sum_{t}\left(n_{l, t}^{\text {est }}-n_{l, t}^{\text {true }} / n_{l, t}^{\text {true }}\right)^{2}}{\tau}} \times 100 \% \\
\mathrm{RB}_{l} & =\frac{\sum_{t}\left(n_{l, t}^{\text {est }}-n_{l, t}^{\text {true }} / n_{l, t}^{\text {true }}\right)}{\tau} \times 100 \%
\end{aligned}
$$

Simulation experiments

- Experiment 2: comparison of spatiotemporal and spatially-implicit models

Simulation experiments

- Experiment 2: comparison of spatiotemporal and spatiallyimplicit models

Simulation experiments

- Experiment 3: Effect of sample size

data poor
moderate level
data rich

50 locations
100 locations
200 locations

$$
\begin{aligned}
\mathrm{RMSE}_{l} & =\sqrt{\frac{\sum_{t}\left(n_{l, t}^{\text {est }}-n_{l, t}^{\text {true }} / n_{l, t}^{\text {true }}\right)^{2}}{\tau}} \times 100 \% \\
\mathrm{RB}_{l} & =\frac{\sum_{t}\left(n_{l, t}^{\text {est }}-n_{l, t}^{\text {true }} / n_{l, t}^{\text {true }}\right)}{\tau} \times 100 \%
\end{aligned}
$$

Simulation experiments

- Experiment 3: Effect of sample size

Conclusions

- The spatiotemporal model produced unbiased estimates of abundance and fishing mortality spatially
- The spatiotemporal model outperformed a spatially-implicit model when timevarying selectivity caused by spatial heterogeneity in fishing pressure is ignored
- Our modeling approach bridges the gap between species distribution and population dynamic models and provides the opportunity to improve natural resource management and conservation

Discussion

- Adapt to populations with different types of life history through straightforward modifications
- The comparison scenario we show here represents the situation where a strong and persistent gradient of fishing pressure occurs over space and time
- Possible to explicitly model movement
- Selectivity -
- more biologically interpretable
- could be corroborated by other field sampling
- The advance comes at the expense of greater data requirements

ACKNOWLEDGEMENTS

- We thank K. Kristensen and the developers of Template Model Builder, without which this analysis would not be feasible
- NOAA "Stock Assessment and Analytic Methods" (SAAM) grant
- Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063

- We thank R. Methot for helpful comments on an earlier draft

[^0]: Simulated fishing mortality for northern shrimp (inshore area has persistent higher fishing mortality over time than offshore area)

