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Outline  

• Spatially-implicit/Spatially-stratified/Spatiotemporal models 

 

• Spatiotemporal modeling framework (snow crab/northern shrimp) 

 

• Simulation experiments 
• recover spatial patterns/unbiased estimates of spatially-aggregated population quantities  

• implicitly accounts for movement processes  

• outperforms spatially-implicit models 

 



Why spatiotemporal model ?  

• Heterogeneous and complex spatial structure – population and fishery 

• Spatially-implicit models – biased estimates of population quantities 

• Spatially-stratified models 

• spatial strata/movement of individuals among strata  

Correlations - process errors/fishery patterns 

Spatial correlation (either based on adjacency or distance )  



• Combines theory and methods from population dynamics and geostatistics 

• Assume population density varies continuously across space 

 

 

 

• Joint distribution for density at all locations 

• Expand to account for size-structured population dynamics 

Spatiotemporal population model 
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Objectives 

• Development – estimating population dynamics at a fine spatial scale  

• Demonstration – two species (snow crab and northern shrimp) 

• Comparison – spatiotemporal model vs. spatially-implicit model 

• Evaluation – effect of sample size 



Why size-structured models? 

• Advantages: 

– Requires no ability to age animals (shrimps, crabs, lobsters) 

– Uses the data actually available 

– Vulnerability / maturity are often functions of size and not 

age 

 



 

Process model 
Abundance at size (n) for a given location s and time t 

 
 

𝒏𝑠,𝑡+1 = 𝑔(𝒏𝑠,𝑡) ∘ 𝑒
𝜺𝑠,𝑡  

 
𝚺𝑡 ~ MVN(0, 𝐑𝑠𝑝𝑎𝑡𝑖𝑎𝑙  ⊗ 𝚯𝑳)  

 

∘              Hadamard product (entrywise product) 

s location 

t year 

⊗ Kronecker product 
 

 

𝒏𝑠,𝑡   vector of abundances for each of l size classes 

 

𝑔()   function representing population dynamic 

 

𝜺𝑠,𝑡 vector of random effects (process error) 

 

𝚯𝑳 covariance among size classes (l by l matrix L) 

 

𝐑𝑠𝑝𝑎𝑡𝑖𝑎𝑙 spatial covariance matrix (covariance between 2 

 locations  follows a Matern function) 

  

 



• Example 1: Gulf of Maine northern shrimp 

Population dynamic (𝑔()) 

𝑔 𝐧𝑠,1 = 𝐫𝑠,𝑡 ∘ exp (𝛗)  

𝐜𝑠,𝑡 =
𝐯𝑓𝑠,𝑡

𝐯𝑓𝑠,𝑡 +𝐦𝑠,𝑡
∘ 1 − exp −𝐦𝑠,𝑡 − 𝐯𝑓𝑠,𝑡 ∘ 𝐧𝑠,𝑡 

Initial condition: 

The predicted harvest per area:  

𝑔 𝐧𝑠,𝑡 = 𝐆 𝐧𝑠,𝑡−1 ∘ exp −𝐦𝑠,𝑡−1 − 𝐯𝑓𝑠,𝑡−1 + 𝐫𝑠,𝑡 

lo g( 𝑓𝑠,𝑡)|lo g( 𝑓𝑠,𝑡−1)~N(lo g( 𝑓𝑠,𝑡−1), 𝜎𝑓
2  



• Example 2: Eastern Bering sea snow crab 

 

Population dynamic (𝑔()) 

𝑔 𝐧𝑠,𝑡
male =  

  𝐫𝑠,𝑡𝑝
male + 𝐆male 𝐧𝑠,𝑡−1

male ∘ exp −𝐦𝑠,𝑡−1 − 𝐯𝑓𝑠,𝑡−1
male ∘ (1 − 𝐰male),                                 𝑛 = 𝐧𝜆 

 𝐆male 𝐧𝑠,𝑡−1
male ∘ exp −𝐦𝑠,𝑡−1 − 𝐯𝑓𝑠,𝑡−1

male ∘ 𝐰male + 𝐧𝑠,𝑡−1
ℎ ∘ exp −𝐦𝑠,𝑡−1 − 𝐯𝑓𝑠,𝑡−1

male , 𝑛 = 𝐧𝜔
 

𝑔 𝐧𝑠,1
male =  𝐫𝑠,1𝑝

male ∘ ex p(𝛗male   

𝐜𝑠,𝑡 = 1 − exp −𝐯𝑓𝑠,𝑡
male ∘ 𝐧𝑠,𝑡

male ∘  exp −0.5𝐦𝑠,𝑡  

Initial condition: 

The predicted harvest per area:  

lo g( 𝑓𝑠,𝑡)|lo g( 𝑓𝑠,𝑡−1)~N(lo g( 𝑓𝑠,𝑡−1), 𝜎𝑓
2  



Model parameters and estimation 

𝚯𝑳 process error covariance (among size classes) 

𝜅 geostatistical range for correlations 

𝜇𝑡 average offset of annual recruitment 

𝜑 initial abundance of each size class 

s parameters of selectivity (logistic) 

 Parameters of observation model 

r𝑡
𝑢 spatial variation in recruitment  

 

n𝑡  spatial variation in density for each size class 

 and year 

 

f fishing mortality of location s over time 

 

 treat density as random, rather than process errors 

(𝜀𝑡) 

Fixed effects Random effects 



Gaussian Markov random field (GMRF) 

•Continuous spatial process -> discretely indexed GMRF 
•Matérn covariance function 
•Mesh/knot 
• SPDE – MVN 
• Piecewise constant 
•Catch – lognormal  
• Survey – lognormal/Poisson-link 

 

Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve 

precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science, 72(5), pp.1297-1310. 



Input data 

survey data commercial catch data 

• used to create mesh/knots 

 

• fine scale 

• aggregated to knot-level 

 



Model outputs 

• Predicted population density map 

• Estimated fishing mortality map 

• Predicted catch map 

• Estimated covariance of process error 

 



Simulation – operating model  
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• Dynamics occur at fine scale 

• Population dynamics (non-spatial) formulated identically to EM 

• Cell-specific parameters (spatially correlated) 

• Annual time step 

• Movement       𝐍𝑡+1 = 𝑔(𝐌𝐍𝑡) ∘ 𝑒
𝚺𝑡    

𝜕

𝜕𝑡
𝐧 = 𝐍𝐧 

N is the matrix of instantaneous movement rates  

𝐌 ≈ 𝐈 +
𝐍∆𝑡

𝑛𝑡𝑑𝑖𝑣

𝑛𝑡𝑑𝑖𝑣

 

M is annual movement rates  

# of cells: 36140 



Simulation experiments 

1. Explore how the spatiotemporal model performs when individual 

movement processes are modeled explicitly 

2. Compare spatially-implicit and spatiotemporal models 

3. Evaluate the impact of changing sample size 



Simulation experiments  
    – Experiment 1:  Exploring movement 

1. No measurement error and no movement in the OM 

2. Same as scenario 1, except there is movement 

3. Both measurement error and movement in the OM  

• 200 sites (grid cells) in the OM were randomly sampled each year 

• For each site, total abundance by size class and the total area of the sampled site were recorded 

• Fishery catch-at-size was calculated at each of the 36,140 grids and then aggregated to the knot level as data for the EM 

• For the scenarios with measurement error, we generated 100 replicated data sets with sampling errors, i.e., grid-based 

survey abundance and fishery catch data were assumed to be lognormally distributed 

  



Simulation experiments  
     – Experiment 1:  Exploring movement 



Simulation experiments  
     – Experiment 1:  Exploring movement 

Fishing mortality 
Catch 



Simulation experiments  
     – Experiment 1:  Exploring movement 

Spatially-aggregated total abundance (a) and total removals (b) by size class over time  



Simulation experiments  
 – Experiment 2: comparison of spatiotemporal and spatially-implicit models  

  

Spatially-implicit model – size structured assessment model for Pandalus (Cao et al. 2017 )  

Simulated fishing mortality for northern shrimp (inshore area has persistent higher fishing mortality over time than offshore area)  



Simulation experiments  
 – Experiment 2: comparison of spatiotemporal and spatially-implicit models  

  

• the data used in both estimation models are the same at the grid spatial scale  

• 50 knots for the spatiotemporal model  

• a metric that is directly comparable  

• abundance-at-size, fishing mortality at size and spawning stock biomass aggregated over 

the spatial domain   

• population-level fishing mortality 

• aggregate selectivity-at-length   

𝑐𝑙,𝑡 = 1 − exp −𝑠𝑙,𝑡𝑓𝑡 𝑛𝑙,𝑡 exp −𝑚𝑡  

RMSE𝑙 =  

 
𝑛𝑙,𝑡
𝑒𝑠𝑡 − 𝑛𝑙,𝑡

𝑡𝑟𝑢𝑒

𝑛𝑙,𝑡
𝑡𝑟𝑢𝑒 

2

𝑡

𝜏
× 100% 

RB𝑙 = 

 
𝑛𝑙,𝑡
𝑒𝑠𝑡 − 𝑛𝑙,𝑡

𝑡𝑟𝑢𝑒

𝑛𝑙,𝑡
𝑡𝑟𝑢𝑒 𝑡

𝜏
× 100% 



Simulation experiments  
 – Experiment 2: comparison of spatiotemporal and spatially-implicit models  

  



Simulation 
experiments  
 
– Experiment 2: comparison 
of spatiotemporal and spatially-
implicit models    



Simulation experiments  
     – Experiment 3: Effect of sample size  

data poor  50 locations 

moderate level 100 locations 

data rich  200 locations 

  

RMSE𝑙 =  

 
𝑛𝑙,𝑡
𝑒𝑠𝑡 − 𝑛𝑙,𝑡

𝑡𝑟𝑢𝑒

𝑛𝑙,𝑡
𝑡𝑟𝑢𝑒 

2

𝑡

𝜏
× 100% 

RB𝑙 = 

 
𝑛𝑙,𝑡
𝑒𝑠𝑡 − 𝑛𝑙,𝑡

𝑡𝑟𝑢𝑒

𝑛𝑙,𝑡
𝑡𝑟𝑢𝑒 𝑡

𝜏
× 100% 



Simulation experiments  
     – Experiment 3: Effect of sample size  



Conclusions 

• The spatiotemporal model produced unbiased estimates of abundance and fishing 

mortality spatially  

• The spatiotemporal model outperformed a spatially-implicit model when time-

varying selectivity caused by spatial heterogeneity in fishing pressure is ignored  

• Our modeling approach bridges the gap between species distribution and population 

dynamic models and provides the opportunity to improve natural resource 

management and conservation  



Discussion 

• Adapt to populations with different types of life history through straightforward modifications 

• The comparison scenario we show here represents the situation where a strong and persistent 

gradient of fishing pressure occurs over space and time 

• Possible to explicitly model movement 

• Selectivity –  

 more biologically interpretable  

 could be corroborated by other field sampling  

• The advance comes at the expense of greater data requirements 
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