A simulation comparison of spatiotemporal and spatially-implicit size-structured models for northern shrimp and snow crab

Jie Cao, James T. Thorson, André Punt, Cody Szuwalski

CAPAM, La Jolla Oct. 2, 2018

Outline

- Spatially-implicit/Spatially-stratified/Spatiotemporal models
- Spatiotemporal modeling framework (snow crab/northern shrimp)
- Simulation experiments
 - recover spatial patterns/unbiased estimates of spatially-aggregated population quantities
 - implicitly accounts for movement processes
 - outperforms spatially-implicit models

Why spatiotemporal model?

- Heterogeneous and complex spatial structure population and fishery
- Spatially-implicit models biased estimates of population quantities
- Spatially-stratified models
 - spatial strata/movement of individuals among strata

Correlations - process errors/fishery patterns Spatial correlation (either based on adjacency or distance)

Spatiotemporal population model

- Combines theory and methods from population dynamics and geostatistics
- Assume population density varies continuously across space

$$x(s_i) \sim N\left(\frac{1}{|n_i|} \sum_{j \in n_i} x(s_j), \sigma^2\right)$$

- Joint distribution for density at all locations
- Expand to account for size-structured population dynamics

Objectives

- Development estimating population dynamics at a fine spatial scale
- Demonstration two species (snow crab and northern shrimp)
- Comparison spatiotemporal model vs. spatially-implicit model
- Evaluation effect of sample size

Why size-structured models?

- Advantages:
 - Requires no ability to age animals (shrimps, crabs, lobsters)
 - Uses the data actually available
 - Vulnerability / maturity are often functions of size and not age

Process model

Abundance at size (n) for a given location s and time t

$$\boldsymbol{n}_{s,t+1} = g(\boldsymbol{n}_{s,t}) \circ e^{\boldsymbol{\varepsilon}_{s,t}}$$

 $\Sigma_t \sim \text{MVN}(0, \mathbf{R}_{spatial} \otimes \Theta_L)$

- Hadamard product (entrywise product)
- s location
- t year
- \otimes Kronecker product

- $n_{s,t}$ vector of abundances for each of l size classesg()function representing population dynamic $\boldsymbol{\varepsilon}_{s,t}$ vector of random effects (process error) $\boldsymbol{\Theta}_L$ covariance among size classes (l by l matrix L)
- $\mathbf{R}_{spatial}$ spatial covariance matrix (covariance between 2 locations follows a Matern function)

Population dynamic (g())

• Example 1: Gulf of Maine northern shrimp

$$g(\mathbf{n}_{s,t}) = \mathbf{G}(\mathbf{n}_{s,t-1} \circ \exp(-\mathbf{m}_{s,t-1} - \mathbf{v}f_{s,t-1})) + \mathbf{r}_{s,t}$$

Initial condition:

$$g(\mathbf{n}_{s,1}) = \mathbf{r}_{s,t} \circ \exp(\boldsymbol{\varphi})$$

The predicted harvest per area:

$$\mathbf{c}_{s,t} = \frac{\mathbf{v}f_{s,t}}{\mathbf{v}f_{s,t} + \mathbf{m}_{s,t}} \circ \left(1 - \exp(-\mathbf{m}_{s,t} - \mathbf{v}f_{s,t})\right) \circ \mathbf{n}_{s,t}$$

 $\log(f_{s,t})|\log(f_{s,t-1}) \sim N(\log(f_{s,t-1}), \sigma_f^2)$

Population dynamic (g())

• Example 2: Eastern Bering sea snow crab

$$g(\mathbf{n}_{s,t}^{\text{male}}) = \begin{cases} \mathbf{r}_{s,t} p^{\text{male}} + \mathbf{G}^{\text{male}}(\mathbf{n}_{s,t-1}^{\text{male}} \circ \exp(-\mathbf{n}_{s,t-1} - \mathbf{v}f_{s,t-1}^{\text{male}})) \circ (1 - \mathbf{w}^{\text{male}}), & n = \mathbf{n}^{\lambda} \\ \mathbf{c}_{\text{male}}(\mathbf{m}_{s,t}) = \begin{pmatrix} \mathbf{c}_{s,t} p^{\text{male}} + \mathbf{G}^{\text{male}}(\mathbf{n}_{s,t-1}^{\text{male}} \circ \exp(-\mathbf{n}_{s,t-1} - \mathbf{v}f_{s,t-1}^{\text{male}})) \circ (1 - \mathbf{w}^{\text{male}}), & n = \mathbf{n}^{\lambda} \end{cases}$$

$$(\mathbf{m}_{s,t} - \mathbf{v}_{s,t-1})^{-1} = (\mathbf{G}^{\text{male}}(\mathbf{n}_{s,t-1}^{\text{male}} \circ \exp(-\mathbf{m}_{s,t-1} - \mathbf{v}_{s,t-1}^{\text{male}})) \circ \mathbf{w}^{\text{male}} + \mathbf{n}_{s,t-1}^{h} \circ \exp(-\mathbf{m}_{s,t-1} - \mathbf{v}_{s,t-1}^{\text{male}}), \qquad n = \mathbf{n}^{\omega}$$

Initial condition:

$$g(\mathbf{n}_{s,1}^{\text{male}}) = \mathbf{r}_{s,1} p^{\text{male}} \circ \exp(\mathbf{\phi}_{\text{male}})$$

The predicted harvest per area:

$$\mathbf{c}_{s,t} = \left(1 - \exp\left(-\mathbf{v}f_{s,t}^{\text{male}}\right)\right) \circ \mathbf{n}_{s,t}^{\text{male}} \circ \exp\left(-0.5\mathbf{m}_{s,t}\right)$$

 $\log(f_{s,t})|\log(f_{s,t-1}) \sim \mathrm{N}(\log(f_{s,t-1}), \sigma_f^2)$

Model parameters and estimation

f

Fixed effects

Random effects

Θ_L	process error covariance (among size classes)
κ	geostatistical range for correlations
μ_t	average offset of annual recruitment
arphi	initial abundance of each size class
S	parameters of selectivity (logistic)
	Parameters of observation model

- \mathbf{r}_t^u spatial variation in recruitment
- n_t spatial variation in density for each size class and year
 - fishing mortality of location s over time

treat density as random, rather than process errors $(\underline{\varepsilon}_t)$

Gaussian Markov random field (GMRF)

- Continuous spatial process -> discretely indexed GMRF
- Matérn covariance function
- Mesh/knot
- SPDE MVN
- Piecewise constant
- Catch lognormal

- Survey lognormal/Poisson-link

Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. *ICES Journal of Marine Science*, 72(5), pp.1297-1310.

Input data

survey data

Size_class	Year	Catch_N	AreaSwept_km2	Vessel	Lat	Lon
1	1	553	3.1	0	60	-174
1	1	629	3.1	0	63.5	-172
1	1	575	3.1	0	58	-170
1	1	618	3.1	0	61.5	-178
1	1	625	3.1	0	64.5	-170
1	1	634	3.1	0	61	-172

• used to create mesh/knots

commercial catch data

X	lat	lon	year	X.1	X.2	X.3	X.4	X.5
1	55.6	-169	1	0.802	2.82	2.32	3.18	7.18
2	56.3	-170	1	0.657	1.83	1.54	2.15	4.94
3	56.3	-170	1	0.662	1.82	1.54	2.16	4.96
4	56.2	-171	1	0.64	1.78	1.5	2.1	4.81
5	56.2	-170	1	0.645	1.8	1.51	2.12	4.85
6	56.2	-170	1	0.646	1.82	1.52	2.13	4.88

• fine scale

• aggregated to knot-level

Model outputs

- Predicted population density map
- Estimated fishing mortality map
- Predicted catch map
- Estimated covariance of process error

Simulation – operating model

- Dynamics occur at fine scale
- Population dynamics (non-spatial) formulated identically to EM
- Cell-specific parameters (spatially correlated)
- Annual time step
- Movement $\mathbf{N}_{t+1} = g(\mathbf{M}\mathbf{N}_t) \circ e^{\Sigma_t}$

$$\frac{\partial}{\partial t}\mathbf{n} = \mathbf{N}\mathbf{n}$$

N is the matrix of instantaneous movement rates

$$\mathbf{M} \approx \left(\mathbf{I} + \frac{\mathbf{N}\Delta t}{n_{tdiv}}\right)^{n_{tdiv}}$$

M is annual movement rates

- Explore how the spatiotemporal model performs when individual movement processes are modeled explicitly
- 2. Compare spatially-implicit and spatiotemporal models
- 3. Evaluate the impact of changing sample size

- Experiment 1: Exploring movement

- 1. No measurement error and no movement in the OM
- 2. Same as scenario 1, except there is movement
- 3. Both measurement error and movement in the OM
- 200 sites (grid cells) in the OM were randomly sampled each year
- For each site, total abundance by size class and the total area of the sampled site were recorded
- Fishery catch-at-size was calculated at each of the 36,140 grids and then aggregated to the knot level as data for the EM
- For the scenarios with measurement error, we generated 100 replicated data sets with sampling errors, i.e., grid-based survey abundance and fishery catch data were assumed to be lognormally distributed

- Experiment 1: Exploring movement

Size class 5

- Experiment 1: Exploring movement

Sim

- Experiment 1: Exploring movement

Spatially-aggregated total abundance (a) and total removals (b) by size class over time

- Experiment 2: comparison of spatiotemporal and spatially-implicit models

Spatially-implicit model – size structured assessment model for Pandalus (Cao et al. 2017)

Simulated fishing mortality for northern shrimp (inshore area has persistent higher fishing mortality over time than offshore area)

- Experiment 2: comparison of spatiotemporal and spatially-implicit models

- the data used in both estimation models are the same at the grid spatial scale
- 50 knots for the spatiotemporal model
- a metric that is directly comparable
- abundance-at-size, fishing mortality at size and spawning stock biomass aggregated over the spatial domain
- population-level fishing mortality
- aggregate selectivity-at-length

$$c_{l,t} = \left(1 - \exp\left(-s_{l,t}f_t\right)\right) n_{l,t} \exp\left(-m_t\right)$$

$$RMSE_{l} = \sqrt{\frac{\sum_{t} \left(\frac{n_{l,t}^{est} - n_{l,t}^{true}}{n_{l,t}^{true}}\right)^{2}}{\tau} \times 100\%}$$

$$(n^{est} - n^{true} / n_{l,t}^{true})$$

$$RB_{l} = \frac{\sum_{t} \left(\frac{n_{l,t}^{ost} - n_{l,t}^{true}}{\tau} \right)}{\tau} \times 100\%$$

- Experiment 2: comparison of spatiotemporal and spatially-implicit models

Experiment 2: comparison
 of spatiotemporal and spatially implicit models

- Experiment 3: Effect of sample size

data poor moderate level data rich 50 locations100 locations200 locations

$$RMSE_{l} = \sqrt{\frac{\sum_{t} \left(\frac{n_{l,t}^{est} - n_{l,t}^{true}}{n_{l,t}^{true}}\right)^{2}}{\tau} \times 100\%}$$
$$RB_{l} = \frac{\sum_{t} \left(\frac{n_{l,t}^{est} - n_{l,t}^{true}}{n_{l,t}^{true}}\right)}{\tau} \times 100\%$$

- Experiment 3: Effect of sample size

Conclusions

- The spatiotemporal model produced unbiased estimates of abundance and fishing mortality spatially
- The spatiotemporal model outperformed a spatially-implicit model when timevarying selectivity caused by spatial heterogeneity in fishing pressure is ignored
- Our modeling approach bridges the gap between species distribution and population dynamic models and provides the opportunity to improve natural resource management and conservation

Discussion

- Adapt to populations with different types of life history through straightforward modifications
- The comparison scenario we show here represents the situation where a strong and persistent gradient of fishing pressure occurs over space and time
- Possible to explicitly model movement
- Selectivity
 - more biologically interpretable
 - could be corroborated by other field sampling
- The advance comes at the expense of greater data requirements

ACKNOWLEDGEMENTS

- We thank K. Kristensen and the developers of Template Model Builder, without which this analysis would not be feasible
- NOAA "Stock Assessment and Analytic Methods" (SAAM) grant
- Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063
- We thank R. Methot for helpful comments on an earlier draft

