

Assessment developments including climate enhanced multi-species models from the North Pacific.

James Ianelli Kirstin Holsman and James T. Thorson

Alaska Fisheries Science Center NMFS/NOAA/Dept of Commerce UW, Oct 30th 2019 I get to think about fish...

"Water" by Giuseppe Arcimboldo (1527–1593) . Kunsthistorisches Museum, Vienna.

Key points

- Single species developments
 - State of space
 - Spatio-temporal modeling of catch rate data
 - Process errors and scientific surveys
 - Random effect models in stock assessment applications
 - Do we use information appropriately?
 - Shortcuts?
 - external, to estimate variances, fixed-effects within big model
 - Process errors on wt-age
- Multi-species extensions
 - Adding dimensionality—increased data demands scales poorly with increased model complexity

Are stock assessment models hard? PROCEDURE_SECTION if (active(yr_eff)||active(coh_eff)) Est_Fixed_Effects_wts(); Get_Selectivity(); Get_Mortality_Rates(); GetNumbersAtAge(); Get_Catch_at_Age(); GetDependentVar(); // Includes MSY, F40% computations Evaluate_Objective_Function(); if (do_fmort) Profile_F(); if (mceval_phase()) write_eval();

Northern area: trace amounts

Bottom trawl survey spatial patterns

2010 standard survey (3.74 million t pollock estimated)

Northern area: trace amounts

2017 standard survey (4.81 million t pollock estimated)

Northern area: 1.34 million t

2018 standard survey (3.1 million t pollock estimated)

Northern area: 1.15 million t

2019 standard survey (5.4 million t pollock estimated)

Northern area: 1.2xx million t

Modeling surveys

- To account for missed areas/years...
- VAST model of Thorson Pollock biomass by regions—VAST run

Pollock biomass by regions—VAST run

Eastings

Source VAST DB

VAST Age compositions compared to design-based

Assessment model coding challenge?

- Index time series correlated by definition
 - ~ 3 line code change to add facility to use an input covariance
 - It did result in adding an "if" statement...no noticeable performance knock...

Example Assessment Results

Acoustic return (Sa from AVO)

Model fits to indices

Year

Year

Bottom trawl survey Selectivity

Process errors in survey catchability/availability

...time varying "catchability" for rigorously conducted scientific fishery-independent survey...

- Incorrect assumption if:
 - Fish don't move
 - They stay in the same place in the water column
- Problem: how to estimate?
- Solution
 - "Layers" project combining information

Acoustic and bottom trawl survey spatio-temporal modeling—Incorporating vertical distribution in index standardization Cole Monnahan Effective Bottom trawl blind Diving zone

Acoustic dead zone

fishing

height

Acoustic Bottom Combined

Bottom trawl survey Selectivity

 Table 27: Goodness of fit to primary data used for assessment model parameter estimation profiling over different constraints on the extent bottom-trawl survey selectivity/availability is allowed to change; EBS pollock.

 Less flexibility in survey "catchability"

ollock.	Less flexibility in survey "catchability"				
Component	$\rm CV70\%$	$\mathrm{CV50\%}$	$\mathrm{CV20\%}$	CV10%	CV05%
RMSE BTS	0.19	0.20	0.25	0.29	0.31
RMSE ATS	0.22	0.22	0.22	0.23	0.25
RMSE AVO	0.20	0.20	0.20	0.20	0.20
RMSE CPUE	0.09	0.09	0.09	0.09	0.09
SDNR BTS	1.02	1.19	1.79	2.23	2.47
SDNR ATS	1.10	1.10	1.11	1.14	1.22
SDNR AVO	0.76	0.75	0.74	0.72	0.71
Eff. N Fishery	1365.51	1372.40	1392.26	1372.23	1278.89
Eff. N BTS	208.52	203.80	178.75	159.65	141.48
Eff. N ATS	215.18	215.53	214.51	209.21	200.07
BTS NLL	20.81	28.35	64.62	99.66	122.72
ATS NLL	8.84	8.85	8.97	9.33	10.33
AVO NLL	9.55	9.54	9.53	9.60	9.71
Fish Age NLL	137.34	138.83	143.86	149.91	159.59
BTS Age NLL	146.41	149.94	168.84	190.99	239.72
ATS Age NLL	26.81	26.89	27.61	28.90	30.68

Year

Age 3-8 relative "availability" to bottom trawl survey

- Random effects model for body mass-at-age
 - Critically important
 - Year and cohort effects

 Under-appreciated impact in near-term forecasts

- Some utility to fitting simple RE models outside
 - Provide justification and specification for fixed-effects in big models
- Another case for fixed-effects modeling...
 - Invert the problem of process error variability
 - Assume input variance (and/or priors)
 - Find the fixed-effect variability that is consistent with that.

2019 Climate-enhanced multi-species Stock Assessment for walleye pollock, Pacific cod, and arrowtooth flounder in the Eastern Bering Sea

Kirstin K. Holsman, James N. Ianelli, Kerim Aydin, Ingrid Spies

kirstin.holsman@noaa.gov

November 2019

Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, Washington 98115

Model-based estimates: CEATTLE

K. Holsman

Climate-Enhanced, Age-based model with Temperature-specific Trophic Linkages and Energetics

Arrowtooth flounder (*Atheresthes stomias*)

W@Age~f(Temperature) Pred/prey~f(Temperature)

CEATTLE

Multispecies model

Result: natural mortality rates

EBS: 2016-now

- Pollock, Cod, ATF
- 2019/2020 + NFS

Holsman, Ianelli, Spies, Thompson, Aydin, Adams, Kearney

GOA: 2019

- Pollock, cod, ATF
- Halibut

Adams, Holsman, Dorn, Spies, Barbeaux, Punt

Result: Predation Index

EBS: 2016-now

- Pollock, Cod, ATF
- 2019/2020 +NFS

Holsman, Ianelli, Spies, Thompson, Aydin, Adams, Kearney

GOA: 2019

- Pollock, cod, ATF
- Halibut

Adams, Holsman, Dorn, Spies, Barbeaux, Punt

CEATTLE

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 37

CEATTLE

CE-EwE

CE-MIZER

ROMS NPZ model

- Developed with NSF/NPRB (Bering Project)
- Ongoing IEA partnership (AFSC/PMEL)
- Significant advances in ice modeling, ice plankton
- Products
 - 40-year hindcast (1971-2012)
 - Nowcasts (annual)
 - 9-month forecast (annual)
 - Forecasts to 2100 with IPCC outputs

ROMSNPZ model

Global Model Reanalysis products:

Image: Kelly Kearney

https://cfs.ncep.noaa.gov/cfsr/ https://polar.ncep.noaa.gov/sst/rtg_high_res/

CMIP5

https://kholsman.shinyapps.io/aclim/

ACLIM ROMS-NPZ indices

Download Data comi smoothing # of years \$ 1 Raw or corrected values 2= bias corrected & recentered -Z-score the values Hindcast 13= 1976-2017, ACLIM updated \mathbf{T} projection model aclim_hindcast GFDL_rcp45 CESM_rcp85 Variables Bottom temperature **Reference period** 1970 1970 1975 1980 1985 1990 1995 2000 2005 2010 2012017 **Plot options** Set Y axis range lower Y limit 0 0 upper Y limit 0 7 line width 2 \$

lower quantile

K. Holsman, K. Aydin

9-month (seasonal) forecast - cold pool

K. Aydin

• Skill testing of ROMS...

Take home

Topics missing?

- Robustness
- Model parameterizations
- Computer programmers & Mathematicians?
- Pragmatism for management
 - Engage environmental and biological expertise
 - OPERATING MODEL SPECIFICATIONS!