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@ Age structured models common in stock assessments
@ Direct aging is expensive
@ Accuracy could be improved

o Working towards a spatial model
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Figure: So can other sampling artifacts.



Model-based ALKs

Can create ALKs via statistical techniques that can give a
probability of being age j given length and other covariates

Statistical techniques like multinomial regression, ordinal
regression, machine learning, etc.

Smooth over gaps and noise

Predict where not observed

Continuous covariates a possibility, including space!



Continuation-Ratio Logits

@ Form of Ordinal Regression
e Easy to implement, easy to relax assumption of equal slopes
across age classes
Definition:
logit(ma[xi]) = P(Y = a|Y > a)

T [X] _ palxi]
av palxi] + ... + palxi]
ma[xi], a=R

P(Y =a)={ m[x] 21 -m[x]) R<a<A
1-Spt1-mx]) a=A

Age a, R- First age in model, A- Last age/Plus Group, x;- Set of
covariates for observation 7, p, proportion at age a



CRL ALK Model

@ Simplest CRL model: logit(ma[x;]) = aa + Bal;

@ «j: Intercept for age a

@ /;: Length of observation i

@ [3; Slope term for length of age a

ALK Creation:

@ Predict model at desired length bins

@ Get unconditional probabilities which form the ALK
malxi], a=R

P(Y=a)={ m[x] >3 (1 -m[x]) R<a<A

1-Y5 1 -mx]) a=A



GAM based Spatial ALKs

o Berg & Kiristensen (2012) presented a number of ALK models
incorporating spatial information in a Generalized Additive
Model

o logit(ma[xi]) = aa + Bali + f(s)

e f() being of latitude and longitude using thin-plate regression
splines

@ They found improved internal and external consistencies for

survey indices using spatial versions of the model vs.
non-spatial versions.



Gaussian Fields

@ GFs are collections of Gaussian Random Variables indexed
across space

Described by mean function p(s) and covariance function
Cov(s, t)

Matérn: c(s,t) = 052’;(;’; <\/87|5—t||) K, <\/871/|5?t”)

r

@ Too slow to use directly for larger cases
Gaussian Markov Random Fields:
GFs with the Markov Property :
P(Xn = Xn‘anla ey Xo = XO) = P(Xn = Xn|Xn71)
v-smoothness parameter, r-range parameter, o,-standard deviation
of GF, K, -Bessel function of the second kind, I" function
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GF Approximation

@ Lindgren et. al found an
Constaine e Doty iangitn explicit link between GFs
and GMRFs when using a
Matérn covariance function

@ A valid semi-positive definite
covariance matrix is the
solution to a set of
Stochastic Partial
Differential Equations

@ This ensures a sparse
structure in the covariance
matrix
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Barrier Approach

@ Bakka et. al extended the SPDE GF approximation to include
the ability to handle physical barriers

@ They did this by have the range parameter inside the area of
barrier be a fraction of the value outside the barrier

SPDE is solution to these equations:
r2 T
u(s)— V- EVU(S) =r EO'UW(S) for s € Q, (1)

I’2 s
u(s)—Vv- gqu(s) = rb\/;ouW(s) for s € Qp (2)
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Barrier Approach — Correlation at a Point
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Spatial ALK with GF

The Spatial ALK model using a GF is

|Ogit(ﬂ'a[xi]) = oz + Bali + fa,s (3)

MVN| 0, c( ) a=1
€as = ( ’ > (4)

MVN 90353—1755 01_2IC(S)> a>1

Model was implemented using Template Model Builder and
Maximum Likelihood (ML) estimation and optimized with nlminb

14



Penalization

@ With large numbers of categories in ordinal regression models,
using ML estimation can cause an optimizer to easily fall into
a local minimum

@ Penalization can help avoid that and improve prediction
accuracy

o logL— I\B'PB
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@ SimSurvey is an R package created by Dr. Paul Regular at
Fisheries and Ocean Canada

@ Simulates Bottom Trawl Research Vessel-like survey data from
a stratified random sample design and an estimate of
abundance at age calculated using the stratified mean method

@ Simulates a population with known abundance at age and
distribute it spatially among an area

@ Offers control over strata design, tow distance, and other
survey settings

@ Publicly available on GitHub
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Simulation Models

Four different ALKs methods were compared:
@ Traditional ALK
@ Non-spatial CRL model: logit(m,[x;]) = aa + Bal;
o GAM model: logit(ma[xi]) = s+ Bali + f(s)
o GF model: logit(m,[xj]) = s + Bali + &as
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Simulation Study

Constrained refined Delaunay triangulation

@ New population every

‘AQ“‘AA" simulation run, 450
Qﬂlﬂgggﬁé simulated surveys
SR
4»4EZ}AAVAV§'} @ Growth from Von

V‘A N Bertalanffy growth curve

@ 48 strata based on depth, 96
total sets, an average of 403
fish aged per survey

@ Length-Stratified sampling
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Root Mean Squared Error

RMSE of estimated abundance at age
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Sim - Prob. of being Age 4,5 or 6 with length of 40cm

true abundance-GF
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Sim - Probability of being Age 4,5 or 6 with length of
40cm-GAM
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Conclusions

o If there is a difference in where ages are distributed across
space incorporating spatial information can improve estimates
of age structure, potentially improving assessment

Future Work: Application to real data set
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