

An example of multi-area modelling using CASAL

tagging data in models: a teaser on some issues and methods

Sophie Mormede, Alistair Dunn, Steve Parker

CASAL: the population model workhorse for NZ

- Bayesian age- or length-structured population model software
- Used for many population models, including
- Multi-stock, multi-area
- Tagging (number and age or length frequency for each cohort of release)
- User-defined time steps
- Simulations
- Management Strategy Evaluations
- Movement: box transfer
- Movement for any partition (e.g. immature or males) at any time step (can have multiple in a year)
- Movement at age parameterized using an ogive with estimable parameters
- Movement can be annually-varying, density-dependent, and / or two-wave migration (at different time steps)

Some simple spatial applications

- Ross Sea toothfish model (Mormede et al , 2014)
- One stock, three fisheries as areas
- Tagging data, age frequency
- Used to set catch limits
- Two-area Amunsden sea toothfish model - Mormede \& Parker (2018)
- Details later
- Three-area oreo model - Doonan et al (2008)
- Age-dependent movement estimated between the three areas
- Age-frequency and surveys
- Not used anymore: new age data contradictory

Other parameters: q, cv_growth
Potential parameters: M, recruitment deviates

More complex spatial application

- Hoki - McKenzie (2016)
- 2 stocks, 4 areas, Natal fidelity or not
- Survey biomass, AF, maturity
- Used to set catch limits
- Selectivity and movement might be confounded but management advice similar

Espmg

Western Spawning Stock
(west coast South Island)

More complex spatial applications

- Snapper - Francis \&

McKenzie (2015)
Time Step 1
Movement home

- 3 stocks with different growth, 3 areas, home fidelity
- tagging data (two tagging programs 1985 and 1994), AF and LF, surveys, CPUE
- Used to set catch limits

Recruitment

Tagging

Time Step 2
Movement to areas

Areas
East Northland Hauraki Gulf
Bay of Plenty

An example: toothfish in the Amundsen Sea region (ASR)

History of the modelling effort for this area

- Two separate models for the North and South until 2011 (FSA-11/43 and 44)
- A single-area model for the entire ASR from 2011 with areas as fleet but conflicting data sources (FSA-13/52), management used a tag-based catch limit
- A two-area model was developed with movement, and required further tagging data from the south which had very few tag recaptures to date (e.g. FSA-14/57)
- A two-year programme was developed to collect such data (SC-14, paragraph 3.168), and has been reconducted in 2016, a total of 4 years now.
- Simulation work carried out in 2017 (SAM-17/40), recommended the two-area model continue to be developed to assess the ASR for 2018.
- Two-area model, presented here (FSA-18/xx), will probably not be used directly for management advice, meeting starts next week

Model structure

- Data fitted to:
- Age frequency in the North in some years with annual ALK
- Age frequency in the South with single ALK for all years
- Mark-recapture data in the North since 2003
- Mark-recapture data in the South since 2015

Estimated parameters

Some of the issues encountered

- Initial drop in North AF not captured by the model
- Model structure or spatial data issue?
- Low proportion of the population goes spawning in the North
- Stock structure?
- Fishing in only part of the stock?
- Indexing changing parts of the population
- Variable / low overlap between tagging events and subsequent fishing events
- Not enough mixing / movement
- Spatial resolution much smaller than the model

Effort in 2014
Releases in 2013

Effort in 2015
Releases in 2014

Effort in 2017
Releases in 2016

Effort in 2018
Releases in 2017

Some indices of spatial overlap

- What effort should be included
- What tags should be included
-What area are you really indexing?
- These are random ideas
- could be used directly in Petersen but more complex in integrated in assessments
- Area indexed another issue

Tags recoverable by sets

Proportion of fished area covered

area
\rightarrow 882North
\star 882Slope

MPD profile / data weighting

- Data weighting: we use the Francis method for all data including tagging
- Binomial likelihood
- Down-weight tagging last, external weighting
- Use single weight for all years (can calculate by year)
- Usually dispersion 1 to 6
stdres[indx] <- (Nobs - Nexp)/sqrt(Nexp) new.dispersion <- var(stdres)
- Also do MPD profiles to look at the actual impact of the tagging data on the parameter estimated
- Here movement parameter

Some other considerations

QUANTIFYING VESSEL PERFORMANCE IN THE CCAMLR TAGGING PROGRAM: SPATIALLY AND TEMPORALLY CONTROLLED MEASURES OF TAG-DETECTION RATES

S. Mormede \boxtimes and A. Dunn

National Institute of Water and
Atmospheric Research (NIWA) Ltd
Private Bag 14901
Kilbirnie, Wellington 6241
New Zealand
Email - sophie.mormede@niwa.co.nz

Abstract

A reliable commercial fish tagging program is critical to the successful man of a number of toothfish fisheries in Antarctica. In particular, tag-detection 1 dirently linked to ctnelv cize ectimated from the tan data in an interrated ctock ace

Influence of data quality and quantity from a multiyear tagging program on an integrated fish stock assessment Philippe Eric Ziegler

Abstract: Using a modeling framework for toothfish (Dissostichus spp.) population dynamics, fishing, and data collection, this study investigated how the bias and precision of biomass estimates from an integrated tag-based assessment are influenced by various aspects of a multiyear tagging program, particularly the effects of the size of tagged fish compared with the size of fish
in the catch (tag size-overlap), numbers of tagged fish, duration of the tagging program, using catch-at-length or catch-at-age data as auxiliary data, and stock depletion levels. Biomass estimates generally improved with more and better-quality tagging data.

Some sensitivities carried out

- Single model in the North
- Resident population in the North as well as migrating population
- Annually-varying or density-dependent migration
- Different migration options: by sex, with ogives moving south
- Adding catches from adjacent areas
- Spawning population everywhere

Simulation work

- Expected precision and bias in biomass estimates in the future based on the current management plan
- Includes changing tagging rates
- Expected observed tag movement rates
- Effect of mis-specification of the spatial structure in the model

(e) North in 2021 (increased tagging)

Towards Casal2

- CASAL is getting old and difficult to maintain / expand
- Developing Casal2 (version 1.0 expected by Christmas)
- Has CASAL functionality
- More flexible: processes, observations, time-varying parameters, multi-species...
- Modular coding: easy to extend when needed
- Unit-testing of individual components
- Full model comparison within coding
- Available on git-hub, designed for collaborations

Some Casal2 additional functionality

- Fully time-varying parameters
- Fully flexible categories, e.g.
- Transition between sexes or any other category transitions
- Natural mortality and growth can be applied by area or category
- Single area can be the source for two migrations (e.g. snapper)
- Catch equations and processes can be applied by area or category

Thank you

- Some references
- Doonan, I.J.; Coburn, R.P.; McMillan, P.J. (2009). Assessment of OEO 3A black oreo for 2006-07. New Zealand Fisheries Assessment Report 2009/12. 46 p.
- Francis, R I C C; McKenzie, J R (2015b). Assessment of the SNA 1 stocks in 2013. New Zealand Fisheries Assessment Report 2015/76.
- Mc.Kenzie, A. (2016) Assessment of hoki (Macruronus novaezelandiae) in 2016. New Zealand Fisheries Assessment Report 2017/11. 84p.
- Mormede, S.; Parker, S.J. (2018). Progress towards an assessment of Antarctic toothfish (Dissostichus mawsoni) in Subarea 88.2 SSRUs 88.2C-H for the years 2002-03 to 201718 using a two-area model. Hobart, Australia, CCAMLR. WG-FSA-18/xx.

Thank you
Sophie Mormede
sophie.mormede@niwa.co.nz

Ministry for Primary Industries

Manatū Ahu Matua

MINISTRY OF BUSINESS, INNOVATION \& EMPLOYMENT
 hÏKINA WHAKATUTUKI

