Evaluating the Consequences of Misspecifying Population Structure within Spatially Explicit Stock Assessments?

CAPAM - SWFSC Katelyn Bosley La Jolla, CA **NOAA** Fisheries Tues, Oct 2, 2018 **Northwest Fisheries Science Center** Newport, Oregon, USA **Coauthors:** Daniel Goethel (NOAA-SEFSC)

Sablefish (Anoplopoma fimbria)

Daniel Goethel (NOAA-SEFSC) Aaron Berger (NOAA-NWFSC) Dana Hanselman (NOAA-AFSC) Amy Schueller (NOAA-SEFSC) Jonathan Deroba (NOAA-NEFSC) Brian Langseth (NOAA-PIFSC)

Increasing evidence that marine species are spatially structured

- Tagging-studies, morphometrics, genetic stock identification, etc.

Rooker et al. 2007

Atlantic bluefin tuna (Thunnus thynnus)

 When data suggest a <u>spatially structured stock</u>, what happens if the assumptions made within a stock assessment regarding stock structure are WRONG?

Rooker et al. 2007

Atlantic bluefin tuna (Thunnus thynnus)

Spatial

PROJECT OBJECTIVE

Processes And Stock Assessment Methods

Green quadrant of Kobe

Evaluate and identify situations where accounting for spatial processes **improves the ability for management actions to achieve desired conservation and management goals**

Spatial

PROJECT OBJECTIVE

Processes And Stock Assessment Methods

Evaluate and identify situations where accounting for spatial processes **improves the ability for management actions to achieve desired conservation and management goals**

Many HYPOTHESES to explore

- Optimal spatial quota allocation
- Misdiagnosis of population structure
- Variation in life-history characteristics
- Reference points
- Data quality/quantity (Goethel)
- Management & regulations (Berger)

METHODS: TAG-INTEGRATED SIMULATION FRAMEWORK

THE SPASAM MODELS ("The TIM")

- Spatially-explicit, tag-integrated models
- Simulation Model & Assessment Model
- HIGHLY flexible!!

Model Features:

- Generalized, Age-structured
- Several population structures
- Allows for user to specify number of populations, regions, and fleets
- Spatially-varying biological and fishery parameters
 - Recruitment, movement, maturity, growth, natural mortality, fishery selectivity
- Stochastic and density-dependent parameterizations
- Simulates observed data with error

MODEL APPLICATION: OUR CASE STUDY

MODEL APPLICATION

Plenty of evidence that suggests that a stock exhibits some degree of <u>spatial heterogeneity</u> & <u>connectivity</u>...now what?

Research questions:

- 1) Can we obtain **improved estimates for stock productivity** by taking into account the spatial structure of spawning components and connectivity among them?
- 2) What are the consequences of misdiagnosing the underlying population structure within a stock assessment
 - Do wrong assumptions regarding population structure really matter when providing management advice?

"True" population dynamics

Assumed population dynamics

OUR APPROACH:

1) Simulate population dynamics for all spatial structures

Sablefish "like" parameters
2) Conduct assessments when true underlying dynamics match/mismatch assumed

3) Compare performance of model in estimating parameters

Model Details:

- Assume data rich
- Observed data are summed for panmictic assessment
- Model inputs are abundance weighted averages
- R_ave estimated
- Initial abundance assumed to be equilibrium unfished abundance-at-age
- Recruitment apportionment is estimated for multi-area models
- Age-invariant annual movement estimated

	↓	Simulation Model			
	Uniform	Multiple Areas	Metapopulation	Natal Homing	
ssessment Model	Panmictic	Panmictic	Panmictic	Panmictic	
		Fleet-as-Areas	Fleets-as-Areas	Fleets-as-Areas	
	Uniform Multi-Area	Tag-Integrated Multi-Area	Tag-Integrated Multi-Area	Tag-Integrated Multi-Area	
	Metapopulation	Tag-Integrated Metapopulation	Tag-Integrated Metapopulation	Tag-Integrated Metapopulation	
Ä	Natal Homing	Tag-Integrated Natal Homing	Tag-Integrated Natal Homing	Tag-Integrated Natal Homing	

NO MOVEMENT

- Age-invariant random movement patterns centered around a mean rate
- Varies by region
- Tag releases 1% of the abundance-at-age in each area

Model Details:

- Assume data rich
- Observed data are summed for panmictic assessment
- Model inputs are abundance weighted averages
- R_ave estimated
- Initial abundance assumed to be equilibrium unfished abundance-at-age
- Recruitment apportionment is estimated for multi-area models
- Age-invariant annual movement estimated

NO MOVEMENT

Simulation Model Uniform **Metapopulation** Natal Homing **Multiple Areas** Panmictic Panmictic Panmictic Panmictic Fleet-as-Areas Fleets-as-Areas Fleets-as-Areas **Assessment Mode** Uniform Tag-Integrated Tag-Integrated Tag-Integrated Multi-Area Multi-Area Multi-Area Multi-Area Tag-Integrated Tag-Integrated Tag-Integrated Metapopulation Metapopulation Metapopulation Metapopulation Tag-Integrated Tag-Integrated Tag-Integrated Natal Homing Natal Homing Natal Homing Natal Homing

Model Details:

- Assume data rich
- Observed data are summed for panmictic assessment
- Model inputs are abundance weighted averages
- R_ave estimated
- Initial abundance assumed to be equilibrium unfished abundance-at-age
- Recruitment apportionment is estimated for multi-area models
- Age-invariant annual movement estimated

	¥	Simulation Model			
	Uniform	Multiple Areas	Metapopulation	Natal Homing	
ssessment Model	Panmictic	Panmictic	Panmictic	Panmictic	
		Fleet-as-areas	Fleets-as-Areas	Fleets-as-Areas	
	Uniform Multi-Area	Tag-Integrated Multi-Area	Tag-Integrated Multi-Area	Tag-Integrated Multi-Area	
	Metapopulation	Tag-Integrated Metapopulation	Tag-Integrated Metapopulation	Tag-Integrated Metapopulation	
Ä	Natal Homing	Tag-Integrated Natal Homing	Tag-Integrated Natal Homing	Tag-Integrated Natal Homing	

Metapopulation **Recruitment Estimation 54%** Metapopulation **Multiple Areas Fleets-as-Areas** convergence Total Recruitment Total Recruitment Total Recruitment 40000 40000 40000 20000 20000 20000 40000 40000 40000 2000 20000 00000 Recruitment 0 40000 20000 ¥ 2 40000 20000 20000 -20000 40000 40000 -40000 20000 20000 20000 20 25 Recruitment Bias Recruitment Bias Recruitment Bias -100 -200 -300 -400 -250 -200 -500--400 -750 -500 -500 -400 -50 -1000-Differ -1000-800 -1500 ä ā 200 -1200 * * * -250 -200 -500 -200 -750 -300 20 -80 20 25 30 -120 25 30 25 Vear

Movement Estimation

Metapopulation

Multiple Areas

Metapopulation

Movement Estimation Greater precision when the TRUE and ASSUMED population structures MATCH

Multiple Areas

Metapopulation

Metapopulation

Conclusions: Looks like...

- Incorrect assumptions of population structure and movement may not lead to biased estimates in productivity <u>IF</u> the true and assumed recruitment dynamics match (*i.e. a single stock recruit function vs multiple*), but this may not be true of all scenarios...these results are PRELIMINARY
- **Precision** in estimation of MOVEMENT greatly improves when true and assumed population structures match
- If metapopulation dynamics are suspected, it may be beneficial to assume a spatial model with connectivity

Technical Challenges

- High dimensional arrays (7D arrays!)
- HUGE number of parameters with complex models
- **Computation time!!!** 0.2 min to 1+ hour each sim
- Operating model parameterizations some result in poor estimation
- Initialization of 'equilibrium' dynamics
- Low convergence rate with mismatched dynamics

NEXT STEPS:

- Apply the model!
- Number of papers planned using the SPASAM framework
- Finish the natal homing component of the models

Acknowledgements

- Kari Fenske (NOAA-AFSC)
- Jim Miller (NOAA-NWFSC)
- Hatfield Marine Science Center

Funding sources

- NOAA Office of Science and technology
- National Research Council
- Stock Assessment Analytical Methods RFP^{for} (int a=1;a<=nages;a++)

for (int z=1;z<=nfleets(j);z++)</pre> weight population(j,r,y,a)=input weight(j,r,a); weight catch(j,r,y,a)=input catch weight(j,r,a);

if (maturity switch equil==0) // for SPR calculations when maturity across areas is equal or if want a straight ave

if (SSB type==1) //fecundity based SSB

Development models can be found at...

hdity(j,r,a)*maturity(j,r,a);//rearranging for summing hregions(j); //average maturity across regions

https://github.com/KatelynBosley/SPASAM

ave mat temp(j,a,r)=prop fem(j,r)*weight population(j,r,y,a)*maturity(j,r,a);//real ave_mat(j,a) = sum(ave_mat_temp(j,a))/nregions(j); //average maturity across reg. wt_mat_mult(j,y,a)=ave_mat(j,a);//for SPR calcs

SPR calcs

if (maturity switch equil==1)

{// calculates the weighted average matruity based on equilibrium apportionment of SS if (SSB type==1) //fecundity based SSB

ave mat temp(j,a,r)=prop fem(j,r)*fecundity(j,r,a)*maturity(j ave mat(j,a) = sum(ave mat temp(j,a))/nregions(j); //average wit mat mult/i w a) =ave mat/i a) //for CDP calo

SCIENCES

MEDICINE

ENGINEERING

Photo credits:

http://pacificrichresources.com/site/assets/files/1417/black_cod.jpg

UNCTION get vitals /POSSIBLE ADDITIONS:

for (int p=1;p<=npops;p++)</pre>

for (int j=1;j<=npops;j++)</pre>

for (int r=1;r<=nregions(j);r++)</pre>

for (int y=1;y<=nyrs;y++)</pre>

//random walk in apportionment or random to give time-varying //switch for input recruitment devs by year to recreate a given population

R ave=ln R ave; ///this is annoying...//a quick fix

The National Academies of

Estimation Model Specifics

Population dynamics equations are identical to Operating Model

ESTIMATED PARAMETERS

R0/R average

Recruit deviations/apportionment

Initial Abundance

Fishery Selectivity

Survey Selectivity

Catchability (q)

Fishing Mortality

Movement

Tag Reporting Rate

Mortality

- Generalized spatially explicit
 - Populations/Regions/Fleets

• Fit to observed data with error

- Age composition, indices, tag recoveries
- Incorporates process error
 - Recruitment, movement, population structure
- Multiple movement parameterizations
 - Constant, time-varying, age-based

Recruitment Estimation

Uniform

Multiple Areas

Metapopulation

Fishing Mortality

Uniform

Multiple Areas

Metapopulation

Panmictic

Metapopulation

0

Area

2

Area

3

NOAA Sablefish Tagging Program

Annual longline survey (June-August)

- T-bar anchor tags on ~1500-3500 sablefish per year (5% of catch); Bering Sea and Aleutian Islands in alternating years, Gulf of Alaska every year
- Tagging time series early 1970s present (40+years!)
- ~370,000+ tagged fish released to date
- Recaptured through survey and fishery (33,000+ recoveries); 650-750/year
- Also some satellite tagging occurs on large (80+ cm) fish for special projects

Gold Standard for the application of spatial models

