Evaluating the Consequences of Misspecifying Population Structure within Spatially Explicit Stock Assessments?

CAPAM - SWFSC
La Jolla, CA
Tues, Oct 2, 2018

Katelyn Bosley
NOAA Fisheries Northwest Fisheries Science Center

Newport, Oregon, USA

Coauthors:
Daniel Goethel (NOAA-SEFSC)
Aaron Berger (NOAA-NWFSC)
Dana Hanselman (NOAA-AFSC)
Amy Schueller (NOAA-SEFSC)
Jonathan Deroba (NOAA-NEFSC)
Brian Langseth (NOAA-PIFSC)

BACKGROUND

- Increasing evidence that marine species are spatially structured
- Tagging-studies, morphometrics, genetic stock identification, etc.

[^0]

Atlantic bluefin tuna (Thunnus thynnus)

BACKGROUND

- When data suggest a spatially structured stock, what happens if the assumptions made within a stock assessment regarding stock structure are WRONG?

Rooker et al. 2007

BACKGROUND

Spatial PROJECT OBJECTIVE

Processes
Evaluate and identify situations where accounting for spatial processes improves the ability for management actions to achieve desired conservation and management goals

Stock Assessment Methods

BACKGROUND

Spatial PROJECT OBJECTIVE

Processes And Stock Assessment Methods

Evaluate and identify situations where accounting for spatial processes improves the ability for management actions to achieve desired conservation and management goals

Many HYPOTHESES to explore

- Optimal spatial quota allocation
- Misdiagnosis of population structure
- Variation in life-history characteristics
- Reference points
- Data quality/quantity (Goethel)
- Management \& regulations (Berger)

METHODS: TAG-INTEGRATED SIMULATION FRAMEWORK

THE SPASAM MODELS ("The TIM")

- Spatially-explicit, tag-integrated models
- Simulation Model \& Assessment Model
- HIGHLY flexible!!

Model Features:

- Generalized, Age-structured

- Several population structures
- Allows for user to specify number of populations, regions, and fleets
- Spatially-varying biological and fishery parameters
- Recruitment, movement, maturity, growth, natural mortality, fishery selectivity
- Stochastic and density-dependent parameterizations
- Simulates observed data with error

MODEL APPLICATION: OUR CASE STUDY

40+ year time series of tagging data to inform movement

Plenty of evidence that suggests that a stock exhibits some degree of spatial heterogeneity \& connectivity...now what?

Research questions:

1) Can we obtain improved estimates for stock productivity by taking into account the spatial structure of spawning components and connectivity among them?
2) What are the consequences of misdiagnosing the underlying population structure within a stock assessment

- Do wrong assumptions regarding population structure really matter when providing management advice?

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

"True" population dynamics

Assumed population dynamics

OUR APPROACH:

1) Simulate population dynamics for all spatial structures

- Sablefish "like" parameters

2) Conduct assessments when true underlying dynamics match/mismatch assumed
3) Compare performance of model in estimating parameters

Model Details:

- Assume data rich
- Observed data are summed for panmictic assessment
- Model inputs are abundance weighted averages
- R_ave estimated
- Initial abundance assumed to be equilibrium unfished abundance-at-age
- Recruitment apportionment is estimated for multi-area models
- Age-invariant annual movement estimated

NO MOVEMENT

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

- Age-invariant random movement patterns centered around a mean rate
- Varies by region
- Tag releases 1% of the abundance-at-age in each area

Model Details:

- Assume data rich
- Observed data are summed for panmictic assessment
- Model inputs are abundance weighted averages
- R_ave estimated
- Initial abundance assumed to be equilibrium unfished abundance-at-age
- Recruitment apportionment is estimated for multi-area models
- Age-invariant annual movement estimated

NO MOVEMENT

	\downarrow Simulation Model			
	Uniform	Multiple Areas	Metapopulation	Natal Homing
	Panmictic	Panmictic	Panmictic	Panmictic
		Fleet-as-Areas	Fleets-as-Areas	Fleets-as-Areas
	Uniform Multi-Area	Tag-Integrated Multi-Area	Tag-Integrated Multi-Area	Tag-Integrated Multi-Area
	Metapopulation	Tag-Integrated Metapopulation	Tag-Integrated Metapopulation	Tag-Integrated Metapopulation
	Natal Homing	Tag-Integrated Natal Homing	Tag-Integrated Natal Homing	Tag-Integrated Natal Homing

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

Spawning Stock Biomass

Uniform

Multiple Areas

Metapopulation

Model Details:

- Assume data rich
- Observed data are summed for panmictic assessment
- Model inputs are abundance weighted averages
- R_ave estimated
- Initial abundance assumed to be equilibrium unfished abundance-at-age
- Recruitment apportionment is estimated for multi-area models
- Age-invariant annual movement estimated

NO MOVEMENT

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

Recruitment Estimation

Fleets-as-Areas

Multiple Areas

convergence

54\%

Metapopulation

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

Recruitment Estimation

Fleets-as-Areas

Multiple Areas

54\%
convergence

Metapopulation

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

Spawning Stock Biomass

Fleets-as-Areas

Multiple Areas

convergence

Metapopulation

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

Spawning Stock Biomass

Fleets-as-Areas

Multiple Areas

Metapopulation

MODEL APPLICATION: MODEL MIISSPECIFICATION EXPERIMENT

Movement Estimation

Multiple Areas

Metapopulation

MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT

Movement Estimation

Greater precision when the TRUE and ASSUMED population structures MATCH

Multiple Areas

Metapopulation

LESSONS LEARNED

Conclusions: Looks like...

- Incorrect assumptions of population structure and movement may not lead to biased estimates in productivity IF the true and assumed recruitment dynamics match (i.e. a single stock recruit function vs multiple), but this may not be true of all scenarios...these results are PRELIMINARY
- Precision in estimation of MOVEMENT greatly improves when true and assumed population structures match
- If metapopulation dynamics are suspected, it may be beneficial to assume a spatial model with connectivity

LESSONS LEARNED

Technical Challenges

- High dimensional arrays (7D arrays!)
- HUGE number of parameters with complex models
- Computation time!!! 0.2 min to $1+$ hour each sim
- Operating model parameterizations - some result in poor estimation
- Initialization of 'equilibrium' dynamics
- Low convergence rate with mismatched dynamics

NEXT STEPS:

CENTER FOR
GENOME RESEARCH \& BIOCOMPUTING

- Apply the model!
- Number of papers planned using the SPASAM framework
- Finish the natal homing component of the models

Acknowledgements

- Kari Fenske (NOAA-AFSC)
- Jim Miller (NOAA-NWFSC)
- Hatfield Marine Science Center

Funding sources

UNCTION get vitals

/POSSIBLE ADDITIONS:
//random walk in apportionment or random to give time-varying
//switch for input recruitment devs by year to recreate a given population $\mathrm{R}_{\text {_ave }}=\ln \mathrm{R}_{\mathrm{R}}$ ave; ///this is annoying...//a quick fix

The National Academies of

SCIENCES
ENGINEERING
MEDICINE

- NOAA Office of Science and technology
- National Research Council

$$
\text { for (int } p=1 ; p<=n p o p s ; p++ \text {) }
$$

$$
\text { \{ for (int } j=1 ; j<=n p o p s ; j++
$$

$$
\text { for (int } r=1 ; r<=n r e g i o n s(j) ; r++ \text {) }
$$

```
for (int y=1;y<=nyrs;y++)
```

- Stock Assessment Analytical Methods RFP ${ }_{4}^{\text {for (int }}$ a=1; a<-nages; a+t)

$$
\text { for (int } z=1 ; z<=\text { nfleets (j) ; z++) }
$$

\{
weight_population (j, r, y, a)=input_weight (j, r, a) ;
weight_catch (j, $r, y, a)=$ input_catch_weight ($j, r, a)$;
if(maturity_switch_equil==0) // for SPR calculations when maturity across areas is equal or if want a straight ave \{
if(SSB type==1) //fecundity based SSB
Development models can be found at... https://github.com/KatelynBosley/SPASAM
adity (j,r,a) *maturity(j,r,a);//rearranging for summing regions (j); //average maturity across regions SPR calcs

```
                        ave_mat_temp(j,a,r)=prop_fem(j,r) *weight_population(j,r,y,a) *maturity (j,r,a);//rea
                        ave_mat(j,a) = sum(ave_mat_temp(j,a))/nregions(j); //average maturity across regio,
        wt_mat_mult (j,y,a)=ave_mat(j,a);//for SPR calcs
    }
}
if(maturity_switch_equil==1)
{// calculates the veighted average matruity based on equilibrium apportionment of SS
    if(SSB_type==1) //fecundity based SSB


\section*{MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT}

\section*{Fishing Mortality}

\section*{Fleets-as-Areas}



Multiple Areas
54\%
convergence

\section*{Metapopulation}




\section*{MODEL APPLICATION: MODEL MIISSPECIFICATION EXPERIMENT}

Fishing Mortality

Fleets-as-Areas



convergence

\section*{Metapopulation}



\section*{Estimation Model Specifics}

Population dynamics equations are identical to Operating Model
\begin{tabular}{|c|}
\hline ESTIMATED PARAMETERS \\
\hline RO/R average \\
\hline Recruit deviations/apportionment \\
\hline Initial Abundance \\
\hline Fishery Selectivity \\
\hline Survey Selectivity \\
\hline Catchability ( \(q\) ) \\
\hline Fishing Mortality \\
\hline Movement \\
\hline Tag Reporting Rate \\
\hline Mortality \\
\hline
\end{tabular}
- Generalized spatially explicit
- Populations/Regions/Fleets
- Fit to observed data with error
- Age composition, indices, tag recoveries
- Incorporates process error
- Recruitment, movement, population structure
- Multiple movement parameterizations
- Constant, time-varying, age-based

\section*{MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT}

\section*{Recruitment Estimation}

\section*{Uniform}



Multiple Areas



Metapopulation



\section*{MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT}

Fishing Mortality

Uniform



Multiple Areas
Metapopulation



Fully Selected F



\section*{MODEL APPLICATION: MODEL MISSPECIFICATION EXPERIMENT}


\section*{MODEL APPLICATION: OUR CASE STUDY}

\section*{NOAA Sablefish Tagging Program}

\section*{Annual longline survey (June-August)}
- T-bar anchor tags on \({ }^{\sim}\) 1500-3500 sablefish per year (5\% of catch); Bering Sea and Aleutian Islands in alternating years, Gulf of Alaska every year
- Tagging time series early 1970s - present (40+years!)
- ~370,000+ tagged fish released to date
- Recaptured through survey and fishery (33,000+ recoveries); 650-750/year
- Also some satellite tagging occurs on large ( \(80+\mathrm{cm}\) ) fish for special projects

\section*{Gold Standard for the application of spatial models}


Red=East Blue=West```


[^0]:    Rooker et al. 2007

