Same data different story: guidelines for data weighting in a multispecies statistical catch-at-age stock assessment framework

Kelli F. Johnson and André E. Punt

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA

October 21, 2015

イロト イヨト イヨト イヨト

Case study

Why perform stock assessments

- Goal of stock assessment models:
 - "... understand, and inform decision-makers of, the consequences of possible fishing activities." (Hollowed *et al.*, 2000)

Why perform stock assessments

- Goal of stock assessment models:
 - "... understand, and inform decision-makers of, the consequences of possible fishing activities." (Hollowed *et al.*, 2000)
- Ecosystem based management
 "... shorthand for more holistic approaches to resource management." (Larkin, 1996)

Why perform stock assessments

- Goal of stock assessment models:
 - "... understand, and inform decision-makers of, the consequences of possible fishing activities." $_{\rm (Hollowed\ et\ al.,\ 2000)}$
- Ecosystem based management
 "... shorthand for more holistic approaches to resource management." (Larkin, 1996)
- Goal of multispecies stock assessment models: explicitly represent species interactions, providing a framework for evaluating ecosystem properties and improved estimates of management quantities.

• increased data requirements

- increased data requirements
- increased uncertainty in model output

v	h	Δ.	
		- y	

- increased data requirements
- increased uncertainty in model output
- decreased transparency associated with increasing complexity

۰.	Λ.	•		
	۰v		`	

- increased data requirements
- increased uncertainty in model output
- decreased transparency associated with increasing complexity
- lack methods for calculating management reference points

- increased data requirements
- increased uncertainty in model output
- decreased transparency associated with increasing complexity
- lack methods for calculating management reference points

Statistical catch-at-age multispecies models

• age-structured forward projection

- age-structured forward projection
- maximum likelihood

- age-structured forward projection
- maximum likelihood

- age-structured forward projection
- maximum likelihood

Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

Assessment Method for Alaska (AMAK; J. lanelli)

イロト 不得下 イヨト イヨト 二日

- age-structured forward projection
- maximum likelihood

・ロト ・四ト ・ヨト ・ヨト

- age-structured forward projection
- maximum likelihood

- age-structured forward projection
- maximum likelihood

- age-structured forward projection
- maximum likelihood

• Aleutian Islands, Alaska

æ

イロト イヨト イヨト イヨト

- Aleutian Islands, Alaska
 - walleye pollock (Theragra chalcogramma)

Image: Image:

æ

-∢ ∃ ▶

- Aleutian Islands, Alaska
 - walleye pollock (Theragra chalcogramma)
 - Atka mackerel (Pleurogrammus monopterygius)

- Aleutian Islands, Alaska
 - walleye pollock (Theragra chalcogramma)
 - Atka mackerel (Pleurogrammus monopterygius)
 - Pacific cod (Gadus macrocephalus)

Why	Multispecies model	Case study	Simulation	Next steps
Case stud	ly			

- Aleutian Islands, Alaska
 - walleye pollock (Theragra chalcogramma)
 - Atka mackerel (Pleurogrammus monopterygius)
 - Pacific cod (Gadus macrocephalus)
- foodweb (blue = predator)

Why	Multispecies model	Case study	Simulation	Next steps
Fixed i	nputs			

- Pacific cod
- Atka mackerel
- ▼ walleye pollock

æ

∃ ► < ∃ ►</p>

Why	Multispecies model	Case study	Simulation	Next steps
Fixed i	nputs			

- Pacific cod
- Atka mackerel
- walleye pollock

Steepness: fixed at individual assessment values (0.7, 0.8, & 1.0)

Why	Multispecies model	Case study	Simulation	Next steps
Fixed input	uts			

- Pacific cod
- Atka mackerel
- walleye pollock

Steepness: fixed at individual assessment values (0.7, 0.8, & 1.0)

Data 'moderate' system

æ

< 3 > < 3 >

Operating model

Johnson & Punt

9 / 20

	Wultispe	cies model	Case study Simu	lation	Next steps
Me	thods				
	Weighting distribution normal lognormal multinomial	weight se _{year} cv n	types survey catch age, length, & diet comps		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Why	Multispe	cies model	Case study Si	mulation	Next steps
Me	thods				
	Weighting distribution normal lognormal multinomial	weight se _{year} cv n	types survey catch age, length, & diet comp	 DS	

Data

Dutu						
source	type	ОМ	EM_1	EM_2	EM_3	EM_4
fishery	catch	0.05				
fishery	age & length	100	1	100	200	1000
survey	index	1	0.01	1	2	10
survey	age & length	100	1	100	200	1000
survey	diet weight	100	1	100	200	1000
survey	diet length	100	1	100	200	1000

▲口→ ▲圖→ ▲国→ ▲国→

 Why
 Multispecies model
 Case study
 Simulation
 Next steps

 Model performance metrics

- Unfished spawning biomass
- Unfished recruitment
- Biomass available to survey
- Spawning biomass
- Annual recruitment
- Fishing mortality

Why	Multispecies model	Case study	Simulation	Next steps
Results				
200 - 150 - 100 -				pollock
200 - 200 -		=		mackerel
200 - 150 - 100 -				Sod

Johnson & Punt

50 -

om

1

Multispecies data weighting

100 em ٠

200

1000

Johnson & Punt

Multispecies data weighting

13 / 20

Johnson & Punt

Multispecies data weighting

14 / 20

Johnson & Punt

15 / 20

Johnson & Punt

Johnson & Punt

17 / 20

Why	Multispecies model	Case study	Simulation	Next steps
Next step	S			

• Coding tasks

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Coding tasks
 - Initial conditions

æ

イロト イ団ト イヨト イヨト

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood

Image: A matrix

표 문 문

Coding tasks

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)

• Coding tasks

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data

Coding tasks

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
 - Weighting methods

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
 - Weighting methods
- Tasks for others or post-doc

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
 - Weighting methods
- Tasks for others or post-doc
 - Two species model

- Initial conditions
- Lognormal survey likelihood
- Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
 - Weighting methods
- Tasks for others or post-doc
 - Two species model
 - Move beyond self-test and estimate using Atlantis data

Acknowledgements

- Dr. Doug Kinzey (SWFSC)
- Alaska Fisheries Science Center
- Northwest Fisheries Science Center
- NOAA / Sea Grant Population Dynamics Fellowship